簡易檢索 / 詳目顯示

研究生: 李承瑋
Li, Cheng-Wei
論文名稱: 沿著流線向液滴串的相互作用
Streamwise Interaction of a Stream of Drops
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 100
中文關鍵詞: 液滴碰撞黏合液滴相互影響性液滴間距尾流影響
外文關鍵詞: Drop Collision, Drop Interaction, Drop Spacing, Wake effect
相關次數: 點閱:291下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以自由液滴落下方式探討兩顆液滴群、三顆液滴群與液滴串在不同環境初始氣體流速的條件下,分別觀察液滴的速度、雷諾數、阻力係數與液滴之間的相互影響性。同時探討液滴串在不同直徑下液滴間的相互影響性。實驗參數分別為:液滴初始直徑(di)、液滴初始間距(Si = S/di)、環境初始氣體流速(vg),其中S為兩液滴間中心距離,使用液滴流體為水。
    實驗結果顯示,液滴速度會受重力影響並會隨著落下距離的增加而增加,而在液滴落下過程中,後方液滴會受到前方液滴尾流影響而有追撞黏合現象的發生。依照不同的實驗條件會有第一次碰撞黏合或第二次碰撞黏合發生,在液滴串的條件下更有第三次碰撞黏合的發生,而碰撞黏合模式又可以分為同軸碰撞與非同軸碰撞。在此之間的變化過程,其液滴受到尾流的影響性則是會隨著雷諾數或是液滴尺寸的變化而改變。
    由不同的實驗條件結果可知,環境初始氣體流速(vg)、液滴初始直徑(di)與液滴初始間距(Si = S/di)的增加會使得碰撞點延後並降低碰撞次數。此外,在固定液滴初始直徑(di)和環境初始氣體流速(vg)的條件下,增加液滴數目亦會使碰撞點延後並降低碰撞次數。而在碰撞過程中,第一次碰撞黏合趨勢與第二次碰撞黏合趨勢或第三次碰撞黏合趨勢會有所不同。

    In this study, the interaction of a stream of water drops aligned in a vertical direction was examined experimentally using a free-falling drop apparatus, which provided different gaseous flows, namely, no flow (quiescent air, vg = 0 m/s), convective air flow (vg = 0.3 m/s and 0.5 m/s) and hot flow (vg = 2.5 m/s). The initial drop diameter (di) was kept at 900 μm. In addition, there were three different numbers of drops to consider in the study, two drops, three drops and a drop stream, and three initial dimensionless drop spacings, Si ≈ 2.5, 5 and 10, were selected in the experiment. In the second part, two different initial drop diameters were considered, 900 μm and 1100 μm.
    The results showed that the merged collision of drops is controlled by the wake effect, which depends on the initial drop spacing (Si), Reynolds number (Re), initial drop diameter (di), and number of drops. The initial drop spacing has a dominant influence in comparison with the others. In the downward moving process of drops with given values of Si and di, the initial merged collision of the first two drops was observed, after which they merged into a large drop; thereafter, this large drop was caught by the rear drop to achieve the second merged collision. The first merged collision occurred either along the same axis or in an off-center situation, but the second merged collision occurred only in the off-center situation. The results showed that the merged collision position shifted to the downstream region with increases in vg, Si, di or the number of drops under fixed di and vg.

    Contents I List of Tables III List of Figures IV Nomenclature X 1. Introduction 1 1.1 Dynamic characteristics of drops 2 1.1.1 Collision and deformation of drops 2 1.1.2 Interaction of drops 7 1.2 Streamwise interaction of two drops and three drops 13 1.3 Objectives 15 2. Experimental apparatus and methods 16 2.1 Drop stream generation system 16 2.2 Convective-flow test section 16 2.3 Experimental methods 18 3. Results and discussion 20 3.1 Dynamic characteristics of a drop stream with various initial drop spacings 20 3.1.1 Velocities of drops 21 3.1.2 Reynolds numbers of drops 25 3.1.3 Drag coefficients of drops 27 3.1.4 Variations in the drop spacing with different positions 28 3.1.5 Drop merging collision 32 3.2 Dynamic characteristics of a drop stream with various initial drop diameters 36 3.2.1 Velocities of drops 36 3.2.2 Reynolds numbers of drops 38 3.2.3 Drag coefficients of drops 39 3.2.4 Variations in drop spacing with different positions 40 3.2.5 Drop merging collision 42 4. Conclusions 46 5. References 47 Tables and figures 55 List of publications 100

    1.Faeth, G. M., “Evaporation and Combustion of Sprays,” Prog. Energy Combust. Sci., Vol. 9, p. 1, 1983.
    2.Ashgriz, N., Poo, Y. J., “Coalescence and Separation in Binary Collisions of Liquid Drops,” J. Fluid Mech., Vol. 221, p. 183, 1990.
    3.Jiang, Y. J., Umemura, A., Law, C. K., “An Experimental Investigation on the Collision Behavior of Hydrocarbon Droplets,” J. Fluid Mech., Vol. 234, p. 171, 1992.
    4.Qian, J., Law, C. K., “Regimes of Coalescence and Separation in Droplet Collision,” J. Fluid Mech., Vol. 331, p. 59, 1997
    5.Gotaas, C., Havelka, P., Jakobsen, H. A., Svendsen, H. F., Hase, M. Roth, N. and Weigand, B., “Effect of viscosity on droplet-droplet collision: Experimental study and numerical comparison,” Phys. Fluids, Vol. 19, p. 102106, 2007
    6.Pan, K. L., Law, C. K., and Zhou, B., “Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision,” J. Appl. Phys., Vol. 103, p. 064901, 2008
    7.Kim, S., Lee, D. J., Lee C. S., “Modeling of binary droplet collisions for application to inter-impingement sprays,” Int. J. Multiphase Flow, Vol. 35, p. 533, 2009.
    8.Jiang, X., James, A. J., “Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces,” J. Eng. Math, Vol. 59, p. 99, 2007.
    9.Brenn, G., Valkovska. D., and Danov, K. D., “The formation of satellite droplets by unstable binary drop collisions,” Phys. Fluids, Vol. 13, p. 2463, 2001.
    10.Ko, G. H., Ryou, H. S., “Modeling of droplet collision-induced breakup process,” Int. J. Multiphase Flow, Vol. 31, p. 723, 2005.
    11.Chen, R. H, “Diesel–diesel and diesel–ethanol drop collisions,” Appl. Therm. Eng., Vol. 27, p. 604, 2007
    12.Post, S. L., Abraham, J., “Modeling the outcome of drop-drop collisions on Diesel sprays,” Int. J. Multiphase Flow, Vol. 28, p. 997, 2002.
    13.Kollar, L. E., Farzaneh M., Karev, A. R. “Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution,” Int. J. Multiphase Flow, Vol. 31, p. 69, 2005.
    14.Krishnan, K. G., Loth, E., “Effect of gas and droplet characteristics on drop-drop collision outcome regimes,” Int. J. Multiphase Flow, Vol. 77, p. 171, 2015.
    15.Chowdhury M. N., Testik, F. Y., Hornack, M. C., Khan, A. A., “Free fall of water drops in laboratory rainfall simulations,” Atmos. Res., Vol. 168, p. 158, 2016.
    16.Willis, K. D., Orme, M. E., “Experiments on the dynamics of droplet collisions in a vacuum,” Exp. Fluids, Vol. 29, p. 347, 2000.
    17.Ghazian, O., Adamiak, K., Castle, G.S.P., “Head-on collision of electrically charged droplets,” J. Electrostat., Vol. 73, p. 89, 2015.
    18.Bararnia, H., Seyyedi, S. M., Ganji, D. D., Khorshidi, B., “Numerical investigation of the coalescence and breakup of falling multi-droplets,” Colloid Surf. A-Physicochem. Eng. Asp., Vol. 424, p. 40, 2013.
    19.Yi, N., Huang, B., Dong, L., Quan, X., Hong, F., Tao, P., Sonh, C., Shang, W., and Deng, T., “Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface,” Sci. Rep., Vol. 4, p. 4303, 2014.
    20.Gao, T. C., Chen, R. H., Pu, J. Y., and Lin, T. H., “Collision between an ethanol drop and a water drop,” Exp. Fluids, Vol. 38, p. 731, 2005.
    21.Chen, R. H. Chen, C. T., “Collision between immiscible drops with large surface tension difference: diesel oil and water,” Exp. Fluids, Vol. 41, p. 453, 2006.
    22.Planchette, C., Lorenceau, E., and Brenn, G., “The onset of fragmentation in binary liquid drop collisions,” J. Fluid Mech., Vol. 702, p. 5, 2012.
    23.Taneda, S., “Experimental investigation of the wake behind a sphere at low Reynolds numbers,” J. Phys. Soc. Jpn., Vol. 11, p. 1104, 1956
    24.Przadka, W., Miedzik, J., Gumowski, K., Goujon-durand, S., Wesfreid, J. E., “The wake behind the sphere; analysis of vortices during transition from steadiness to unsteadiness,” Arch. Mech., Vol. 60, p. 467, 2008.
    25.Zdravkovich, M. M., “Smoke observations of the wake of a group of three cylinders at low Reynolds number,” J. Fluid Mech., Vol. 32, p. 339, 1968.
    26.Cataneo, R., Adam, J. R., Semonin, R. G., “Interactions between Equal-Sized Droplets due to the Wake effect,” J. Atmos. Sci., Vol. 28, p. 416, 1971.
    27.Wong, C. W., Zhou, Y., Mahbub Alam, Md., Zhou, T. M., “Dependence of flow classification on the Reynolds number for a two-cylinder wake,” J. Fluids Struct., Vol. 49, p. 485, 2014.
    28.Tsuji, Y., Morikawa, Y., Terashima, K., “Fluid-dynamic Interaction between Two Spheres,” Int. J. Multiphase Flow, Vol. 8, p. 71, 1982.
    29.Lee, K. C., “Aerodynamic interaction between two spheres at Reynolds numbers around 104,” Aeronautical Quarterly, Vol. 30, p. 371, 1979.
    30.Zhu, C., Liang, S.-C., Fan, L. S., “Particle Wake Effects on the Drag Force of an Interactive Particle,” Int. J. Multiphase Flow, Vol. 20, p. 117, 1994.
    31.Zhang, J., Zhang, J. P., Fan, L. S., “Effect of Particle Size Ratio on the Drag Force of an Interactive Particle,” IChemE, Vol. 83, p. 339, 2005.
    32.Tal, R., Lee, D. N., and Sirignano, W. A., “Heat and momentum transfer around a pair of spheres in viscous flow,” Int. J. Heat Mass Transfer., Vol. 27, p. 1953, 1984.
    33.Tsuji, T., Narutomi, R., Yokomine, T., Ebara, S., Shimizu, A., “Unsteady three-dimensional simulation of interactions between flow and two particles,” Int. J. Multiphase Flow, Vol. 29, p. 1431, 2003.
    34.Prahl, L., Holzer, A., Arlov, D., Revstedt, J., Sommerfeld, M., Fuchs, L., “On the interaction between two fixed spherical particles,” Int. J. Multiphase Flow, Vol. 33, p. 707, 2007.
    35.Zhang, J. Fan, L. S., “A Semianalytical Expression for the Drag Force of an Interactive Particle Due to Wake Effect,” Ind. Eng. Chem. Res., Vol. 41, p. 5094, 2002.
    36.Chen, R. C., Lu, Y. N., “The flow characteristics of an interactive particle at low Reynolds numbers,” Int. J. Multiphase Flow, Vol. 25, p. 1645, 1999.
    37.Chen, R. C., Wu, J. L., “The flow characteristics between two interactive spheres,” Chem. Eng. Sci., Vol. 55, p. 1143, 2000.
    38.Ramirez-Munoz, J., Soria, A., Salinas-Rodriguez, E., “Hydrodynamic force on interactive spherical particles due to the wake effect,” Int. J. Multiphase Flow, Vol. 33, p. 802, 2007.
    39.Baz-Rodriguez, S.A., Ramirez-Munoz, J., Soria, A., “In-line interaction between two spherical particles due to a laminar wake effect,” Int. J. Multiphase Flow, Vol. 39, p. 240, 2012.
    40.Hetz, A. A., Dhaubhadel, M. N., Telionis, D. P., “Vortex shedding over five in-line cylinders,” J. Fluids Struct., Vol. 5, p. 243, 1991.
    41.Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” J. Fluids Struct., Vol. 10, p. 427, 1996.
    42.Slaouti, A. and Stansby, P. K., “Flow around two circular cylinders by the random-vortex method,” J. Fluids Struct., Vol. 6, p. 641, 1992.
    43.Johnson, T. A. and Patel, V. C., “Flow past a sphere up to a Reynolds number of 300,” J. Fluid Mech., Vol. 378, p. 19, 1999.
    44.Schouveiler, L. and Provansal, M., “Self-sustained oscillations in the wake of a sphere,” Phys. Fluids, Vol. 14, p. 3846, 2002.
    45.Tomboulides, A. G. and Orszag, S. A., “Numerical investigation of transitional and weak turbulent flow past a sphere,” J. Fluid Mech., Vol. 416, p. 45, 2000.
    46.Thompson, M. C., Leweke, T. and Provansal, M., “Kinematics and dynamics of sphere wake transition,” J. Fluids Struct., Vol. 15, p. 575, 2001.
    47.Ashgriz, N. “Handbook of Atomization and Sprays Theory and Applications,” Springer Dordrecht Heidelberg London, New York, 2011.
    48.Morrison, F. A., “An Introduction to Fluid Mechanics,” Cambridge University Press, New York, 2013.
    49.Kaviany, M., “Principles of Convective Heat Transfer”, Springer-Verlag, New York, 1995.
    50.Frank, M. W., “Viscous Fluid Flow,” McGraw-Hill International, New York, 2006.
    51.Sirignano, W. A., “Fluid dynamics and transport of droplets and sprays,” Cambridge University Press, New York, 2010.
    52.Frohn, A. and Roth, N., “Dynamics of Droplets,” Springer Verlag Berlin Heidelberg, New York, 2000.
    53.Van Dyke, M., “An album of Fluid Motion,” The Parabolic Press, Stanford, CA, 1982.
    54.Hsu, P. K., “Interaction of Two Drops along the stream direction,” National Cheng Kung University, Unpublished Master thesis, Department of Mechanical Engineering National Cheng Kung Unversty, 2014
    55.Huang, L. T., “Streamwise Interaction of Three Drops,” National Cheng Kung University, Unpublished Master thesis, Department of Mechanical Engineering National Cheng Kung Unversty, 2015.
    56.Chen, C. K., “Streamwise Interaction of Buring Pure/Compound Drops,” National Cheng Kung University, Unpublished Doctor Dissertation, Department of Mechanical Engineering National Cheng Kung University, 2012.
    57.Van Boxel, J. H., “Numerical model for the fall speed of raindrops in a rainfall simulator,” Workshop on Wind and Water Erosion, P.77, 1997.
    58.Bread, K. V., “Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft,” J. Atmos. Sci., Vol. 33, p. 851, 1976.
    59.Happel, J. and Pfeffer, R., “The Motion of Two Spheres Following Each Other in a Viscous Fluid,” AIChE J., Vol. 6, p. 129, 1960.
    60.Tal (Thau), R., Lee, D. N. and Sirignano, W. A., “Hydrodynamics and Heat Transfer in Sphere Assemblages: Cylindrical Cell Models,” Int. J. Heat Mass Transfer, Vol. 26, p. 1265, 1983.

    下載圖示 校內:2021-07-17公開
    校外:2021-07-17公開
    QR CODE