簡易檢索 / 詳目顯示

研究生: 賴盈志
Lai, Ying-Zhi
論文名稱: 甲烷水汽催化反應之鈣鈦礦結構LaNixFe1-xO3 (0.2<=x<=0.5)
Characterization of Perovskite Oxide Catalyst LaNixFe1-xO3 (0.2<=x<=0.5) for methane steam reforming
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 62
中文關鍵詞: 甲烷鈣鈦礦結構水汽催化反應
外文關鍵詞: steam reforming, LaNixFe1-xO3, methane, perovskite
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   金屬鎳可作為甲烷水汽還原反應的催化劑,常以在還原氣氛下結構穩定的氧化物作為其金屬催化劑的支架(support),催化劑支架具有提高催化劑和反應氣體接觸表面的功能,可大幅提升其催化效能。

      利用檸檬酸凝膠法(Pechini method)配製具鈣鈦礦結構之LaNixFe1-xO3 (0.2<=x<=0.5),以X光繞射分析和熱程控制還原分析(TPR),証實鎳和鐵可形成良好的固溶相。此外鐵的添加對於鈣鈦礦結構在還原氣氛下的穩定性也隨其添加量增加而提高。

      在甲烷水汽還原下測試,發現在低溫(T=700oC, 750oC, 800oC),甲烷的轉換效率隨著催化劑鎳金屬含量的增加而提高;在較高的溫度(T=850oC , 900oC),催化劑的效能均因為高溫燒結作用催化劑表面積減少而衰減,但支架主要由鈣鈦礦結構所組成之LaNi0.3Fe0.7O3轉換效率的衰減程度較低,其催化效能的穩定性較大。

      Nickel has been reported to be active for methane steam reforming. Using perovskite oxides as the active metal supports can increase the active metal dispersion to enhance the catalytic ability.

      LaNixFe1-xO3 (0.2<=x<=0.5) perovskite type oxides have been synthesized by the Pechini method. The characterizations of LaNixFe1-xO3 (0.2<=x<=0.5) are investigated by X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Ni, Fe, and La form a well solid solution and only one single phase is observed from the XRD patterns. Studies on the TPR curves of these samples show that the addition of iron into the perovskite structure (decrease of nickel content) efficiently stabilizes the perovskite structure in the reducing atmosphere.

      Results of the methane steam reforming over the catalysts show that the conversion ratio increases when the Ni doping amount increases from 0.2 to 0.5 at low temperatures (T=700oC, 750oC, and 800oC). At high reacting temperatures (T=850oC and 900oC), all the catalytic abilities of the LaNixFe1-xO3 (0.2x0.5) series are depressed due to to catalyst sintering, but the LaNi0.3Fe0.7O3 with mainly perovskite (82.3wt%) composed support and sufficient metallic Ni amount (2.6wt%) has a better catalytic ability (reforming ratio of 57.96% at 850oC and 41.45% at 900oC ) at the high temperatures.

    Contents Abstract I 摘要 II Chapter 1 Introduction 1 Chapter 2 Literature Review 3       2-1  Hydrogen 3       2-2  Steam Reforming 6       2-3  Fuel Cell 9       2-3-1 Fuel Cell Technology 9       2-3-2 Fuel for Fuel Cells 12       2-4  Methane Fuel 14       2-5  Perovskite Catalyst 17 Chapter 3 Experimental Procedures 20       3-1  Perovskite Oxide Synthesis 22       3-2  Analysis of Perovskite Oxide 24       3-2-1 XRD 24       3-2-2 TPR 24 3-3 Internal Standard Method 26 Chapter 4 Result & Disscusion 28       4-1  Characterization of the LaNixFe1-xO3 28       4-2  Stability of the LaNixFe1-xO3 32       4-2-1 TPR Analysis 33       4-2-2 XRD of LaNixFe1-xO3 after H2 Reduction 36       4-2-3 Calculation of Reduced Ni Amount 36       4-3  Methane Reforming on LaNixFe1-xO3 40       4-3-1 The Methane Reforming Ratio of LaNi0.2Fe0.8O3 at Each Temperature 40       4-3-2 The Methane Reforming Ratio of LaNixFe1-xO3 (x=0.3, 0.4, 0.5 ) at Each Temperature 42       4-3-3 Reforming Ratio and The Catalyst Composition 46       4-4  Steam Consuming and CO Forming 54 Conslusion 58 Reference 59 Table  Table 2-1                         4 General information of hydrogen  Table 3-1                         21 List of chemical and gases used in the experiment  Table 4-1                         47 Composition of each perovskite oxide after heat treatment in reducing atmosphere Figure Index  Figure 2-1     11     Schematic of an appropriate microstructure for the SOFC  Figure 2-2       15     The possible reaction pathways in an internally reforming SOFC  Figure 2-3        18     Schematic of the perovskite oxide crystal lattice  Figure 3-1        20     Simplified process flow chart of overall experiment  Figure 3-2       23     Schematic of the Pechini synthesis process  Figure 3-3        25     Apparatus of the reforming test  Figure 4-1      29     XRD of LaNixFe1-xO3 (0.2X0.5)  Figure 4-2        30     XRD of LaNixFe1-xO3 (0.2X0.5) with 10wt% silicon addition  Figure 4-3      31     Lattice parameters and cell volumes of each LaNixFe1-xO3  Figure 4-4      34     TPR curves of LaNiO3 and LaFeO3  Figure 4-5      35     TPR curves of LaNiO3, LaFeO3, and LaNixFe1-xO3 (0.2X0.5)  Figure 4-6      37     XRD of LaNixFe1-xO3 (0.2X0.5) after hydrogen reduction  Figure 4-7       39     XRD of LaNixFe1-xO3 (0.2X0.5) with the addition of silicon  Figure 4-8      41     Methane reforming ratio of LaNi0.2Fe0.8O3  Figure 4-9       43     Methane reforming ratio of LaNi0.3Fe0.7O3  Figure 4-10       44     Methane reforming ratio of LaNi0.4Fe0.6O3  Figure 4-11       45     Methane reforming ratio of LaNi0.5Fe0.5O3  Figure 4-12      47     The terminal reforming ratio of all LaNixFe1-xO3 (0.2x0.5)       Figure 4-13 49     TPO curves of LaNixFe1-xO3 (0.2X0.5)  Figure 4-14       50     SEM images of catalysts after reforming test  Figure 4-15       52     SEM images of reduced catalysts after heat treatment  Figure 4-16       55     Time dependence of steam consuming ratio of the LaNixFe1-xO3  Figure 4-17    56     Time dependence of CO forming amount of the LaNixFe1-xO3

    Reference

    [1] Valderrama, G.; Goldwasser, M.R.; de Navarro, C.U.; Tatibouet, J.M.;
    Barrault, J.; Batiot-Dupeyrat, C.; Martinez, F.
      “Dry reforming of methane over Ni perovskite.”
    Catalysis Today 107-108, 785-791 (2005).

    [2] Atkinson, A.; Barnett, S.; Gorte, R.J.; Irvine, J.T.S.; Mcevoy, A.J.;
    Mogensen, M.; Singhal, S.C.; Vohs, J.
      “Advanced anodes for high-temperature fuel cells.”
    Nature Materials 3, 17-27 (2004).

    [3] Utaka, T.; Al-Drees, S.A.; Ueda, J.; Iwasa, Y.; Takeguchi, T.;
    Kikuchi, R.; Eguchi, K.
      “Partial oxidation of methane over Ni catalysts based on
    hexaaliminate- or perovskite-type oxides.”
      Applied Catalysis A-General 247, 125-131, (2003)

    [4] Zhang, R.D.; Villanueva, A.; Alamdari, H.; Kaliaguine, S.
    “Cu- and Pd-substituted nanoscale Fe-based perovskites for selective
      catalytic reduction of NO by propene.”
    Journal of Catalysis 237, 368-380, (2006)

    [5] Provendier, H.; Petit, C.; Kiennemann, A.
    “Steam reforming of methane on LaNixFe1-xO3 (0x1) perovskites.
    Reactivity and characterization after test.”
    Comptes Rendus De L Academie Des Sciences Serie II Fascicule
    C-Chimie 4, 57-66, (2001)

    [6] “Hydrogen”, Wikipedia, the free encyclopedia, (2007)
      (http://en.wikipedia.org/wiki/Hydrogen)

    [7] “Hydrogen in the Universe”, NASA Website, (2006)
     (http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/971113i.html)

    [8] Rostrup-Nielsen, J.R.; Alstrup, I.
    “Innovation and science in the process industry – Steam reforming
    and hydrogenolysis of methane.”
    Catalysis Today 53, 311-316 (1999)

    [9] Hu, Y.H.; Ruckenstein, E.
    “Transient kinetic studies of partial oxidation of CH4.”
    Journal of Catalysis 158, 260-266, (1996)

    [10] Sangtongkitcharoen, W.; Assabumrungrat, S.; Pavarajarn, V.;
    Laosiripojana, N.; Praserthdam, P.
    “Comparison of carbon formation boundary in different modes of
    solid oxide fuel cells fueled by methane.”
    Journal of Powder Sources 142, 75-80, (2005)

    [11] Bunluesin, T.; Gorte, R.J.; Graham, G.W.
    “Studies of the water-gas-shift reaction on ceria-supported Pt, Pd,
    and Rh : implications for oxygen-storge properties.”
    Applied Catalysis B-Environmental 15, 107-114, (1998)

    [12] Sharma, S.; Hilaire, S.; Vohs, J.M.; Gorte, R.J.; Jen, H.W.
    “Evidence for oxidation of ceria by CO2.”
    Journal of Catalysis 190, 199-204, (2000)

    [13] Rostrupn, J.R.
    “Activity of nickel catalysts for steam reforming of
    hydrocarbons”
    Journal of Catalysis 31, 173-199, (1973)

    [14] Martyn, V.T.
    Catalyst Handbook, second edition, Wolfe Publishing Ltd., (1989)

    [15] Subhash, C.; Kevin, K.
    High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and
    Application, Elsevier Inc, USA, (2004)

    [16] Hart, D.
    “A solid start to the millennium?”
    Chemistry & Industry, 344-347, (1998)

    [17] Lloyd, A.C.
    “The power plant in your basement.”
    Scientific American 281, 80+, (1999)

    [18] Dicks, A.L.
    “Hydrogen generation from natural gas for the fuel cell systems of
    tomorrow.”
    Journal of Power Sources 61, 113-124, (1996)

    [19] Jackson, S.D.; Thomson, S.J.; Webb, G.
    “Carbonaceous deposition associated with the catalytic
    steam-reforming of hydrocarbons over nickel alumina catalysts”
    Journal of Catalysis 70, 249-263, (1981)

    [20] “Perovslite”, Wikipedia, the free encyclopedia, (2007)
      (http://en.wikipedia.org/wiki/Perovskite)

    [21] Hamada, N.; Sawada, H.; Solovyev, I.; Terakura, K.
    “Electronic band structure and lattice distortion in perovskite
    transition-metal oxides”,
      Physica B 237, 11-13, (1997)

    [22] Wang, Z.W.
    “The melting of Al-bearing perovskite at the core-mantle boundary.”
    Physics of the Earth and Planetary Interiors 115, 219-228, (1999)

    [23] Pechini, M.P.
    “Method of preparing lead and alkaline earth titanates and niobates
    and coating method using the same to form a capacitor.”
    U. S. Patent 3, 330, 697, (1967)

    [24] Falter, L.M.; Payne, D.A.;Friedmann, T.A.;Wright, W.H.;Ginsberg, D.M.
      “Preparation of ceramic superconductors by the Pechini method”
    British Ceramic Proceedings 41, 261-269, (1989)

    [25] Liebhafsky, H.A.; Peiffer, H.G.; Winslow, E.H.; Zemany, P.D.
    “X-Rays, Elections, and Analytical Chemistry”
    Jhon Wiley & Sons Inc., New York, (1972)

    [26] Moriga, T.; Usaka, O.; Imamura, T.; Nakabayashi, I.; Matsubara, I.;
    Kinouchi, T.; Kikkawa, S.; Kanamaru, F.
    “Synthesis, Crystal Structure, and Properties of Oxygen-Deficient
    Lanthanum Nickelate LaNiO3−x (0 ≤ x ≤ 0.5)”,
    Bulletin of the Chemical Society of Japan 67, 687-693, (1994)

    下載圖示 校內:立即公開
    校外:2007-07-28公開
    QR CODE