| 研究生: |
周雅云 Chou, Ya-Yun |
|---|---|
| 論文名稱: |
迴銲過程銲錫接點形狀變化之模擬及其實驗驗證 The Simulation of Shape Evolution of Solder Joints During Reflow Process and Its Experimental Validation |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 銲錫接點 、模擬 |
| 外文關鍵詞: | PLIC, solder joint, CSF, simulation |
| 相關次數: | 點閱:94 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子構裝技術朝向尺寸更小、密度更高的發展趨勢,面陣列構裝方式已逐漸取代週邊構裝形態。因此,銲錫接點廣泛應用於多種電子構裝製程中以作為電訊通路與結構支持,如覆晶接合、球格陣列封裝、晶片尺寸構裝以及晶圓級封裝等等。許多研究證實,銲錫接點的幾何參數像是錫墊尺寸、平衡站立高度、以及接觸角等,對遭受熱應力負載的銲錫接點之疲勞壽命有顯著的影響。因此,如何發展出可預測迴銲過程中銲錫接點幾何形狀的演算法,已成為最佳化銲錫接點設計之必需。
本研究基於流體力學理論開發出一套三維電腦輔助分析系統,可以用來模擬迴銲過程無荷重銲錫接點的形狀變化,其中模擬系統在速度與壓力場的求解是使用SOLA(SOLution Algorithm)數值技術,在界面重建及流體體積的傳遞問題上採用PLIC(Piecewise Linear Interface Calculation)並耦合VOF(Volume of Fluid)法來計算。為考慮表面張力的作用,採用CSF(Continuum Surface Force)模式計算速度因表面張力所產生的變化。此外,另使用基於能量觀點的程式Surface Evolver來預測迴銲後荷重銲錫接點的形狀變化。所有模擬結果皆與實驗結果比較,證實使用此兩種預估銲錫接點外型的模擬方法皆可得到在準確範圍內的結果。
As electronic packaging technologies continue to move toward smaller scale and higher density, the use of area array type packages have gradually replaced the peripheral type packages. Solder joints are used to provide both mechanical and electrical connections for different applications such as flip-chip, ball grid array, chip-scale packaging, and wafer-level packaging. Several works have demonstrated that geometric parameters, for example, solder pad size, standoff height, and contact angle, etc., significantly influence the fatigue life of the solder joint during thermo/mechanical loading. Therefore, it is imperative to develop an algorithm to predict the solder joint geometry during reflow process, and try to optimize the design of solder interconnects.
In this study, a three-dimensional computer-aid analysis system has been developed based on Fluid Dynamics to simulate the shape evolution of solder joints without loading during reflow process, in which the solution of velocity and pressure fields is based on SOLA(SOLution Algorithm) scheme, and the methods to construct the interface and calculate the transportation of volume fractions of fluid are coupled with PLIC(Piecewise Linear Interface Calculation) and VOF(Volume of Fluid) technologies. In order to consider the effect of surface tension on a fluid surface, the CSF(Continuum Surface Force) model is employed. Furthermore, the energy-based program, Surface Evolver, is used to predict the shape of solder joints with loading of device after reflow process. All the simulation results are compared with experimental measurements, and both the two methods can accurately predict the solder reflow shape in an accurate range.
1. R. R. Tummala, “Fundamentals of Microsystems Packaging”, McGraw Hill International Edition, 2001.
2. H. K. Charles, G. V. Clatterbaugh, “Solder Joint Reliability-Design Implications from Finite Element Modeling and Experimental Testing”, ASME Journal of Electronic Packaging, Vol. 112, No. 2, 1990, pp. 135-146.
3. M. K. Shah, “Analysis of Parameters Influencing Stress in the Solder Joint of Leadless Chip Capacitors”, ASME Journal of Electronic Packaging, Vol. 118, No. 3, 1990, pp. 122-126.
4. R. Satoh, K. Arakawa, M. Harada, K. Matsui, “Thermal Fatigue Life of Pb-Sn Alloy Interconnections”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 14, No.1, 1991, pp. 224-232.
5. K. N. Chiang, Y. T. Lin, H. C. Cheng, “On Enhancing Eutectic Solder Joint Reliability Using a Second-Reflow-Process Approach”, IEEE Transactions on Advanced Packaging, Vol. 23, No. 1, 2000, pp. 9-14.
6. K. N. Chiang, C. A. Yuan, “An Overview of Solder Bump Shape Prediction Algorithms with Validations”, IEEE Transactions on Advanced Packaging, Vol. 24, No.2, 2001, pp. 158-162.
7. L. S. Goldmann, “Geometric Optimization of Controlled Collapse Interconnections”, IBM Journal of Research and Development, Vol. 13, 1969, pp. 251-265.
8. S. M. Heinrich, M. Schaefer, S. A. Schroeder, P. S. Lee, “Prediction of Solder Joint Geometries in Array-Type Interconnects”, Transactions of the ASME Journal of Electronic Packaging, Vol. 118, 1996, pp. 114-121.
9. S. M. Heinrich, S. Shakya, Y. Wang, P. S. Lee, S. A. Schroeder, “Improved Yield and Performance of Ball-Grid Array Packages: Design and Processing Guidelines for Uniform and Nonuniform Arrays”, IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 2, 1996, pp. 310-319.
10. M. J. Pfeifer, “Solder Bump Size and Shape Modeling and Experimental Validation”, IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part B, Vol. 20, No. 4, 1997, pp. 452-457.
11. K. A. Brakke, “Surface Evolver Manual”, Version 2.20, Mathematics Department, Susquehanna University, Selinsgrove, 2003.
12. K. A. Brakke, “The Surface Evolver”, Experimental Mathematics, Vol. 1, No. 2, 1992, pp. 141-165.
13. K. A. Brakke, “The Surface Evolver and the Stability of Liquid Surface”, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 354, 1996, pp. 2143-2157.
14. L. Li, B. H. Yeung, “Wafer Level and Flip Chip Design Through Solder Prediction Models and Validation”, IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, 2001, pp. 650-654.
15. K. N. Chiang, W. L. Chen, “Electronic Packaging Reflow Shape Prediction for the Solder Mask Defined Ball Grid Array”, Transactions of the ASME Journal of Electronic Packaging, Vol. 120, 1998, pp. 175-178.
16. W. H. Chen, K. N. Chiang, S. R. Lin, “Prediction of Liquid Formation for Solder and Non-Solder Mask Defined Array Packages”, Transactions of the ASME Journal of Electronic Packaging, Vol. 124, 2002, pp. 37-44.
17. G. K. Mui, X. H. Wu, K. X. Hu, C. P. Yeh, K. Wyatt, “Solder Joint Formation Simulation and Finite Element Analysis”, 47th Electronic Component and Technology Conference, 1997, San Jose, CA, USA, pp. 436-443.
18. C. M. Liu, K. N. Chiang, “Solder Shape Design and Thermal Stress/Strain Analysis of Flip Chip Packaging Using Hybrid Method”, Int’l Symposium on Electronic Material and Packaging, 2000, Hong Kong, pp. 44-50.
19. C. W. Hirt, B. D. Nichols, R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries”, Technology Report LA-8355, Los Alamos Scientific Laboratory, 1980.
20. C. W. Hirt, B. D. Nichols, ”Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, Journal of Computational Physics, No. 39, 1981, pp. 201-225.
21. A. Celic, G. G. Zilliac, “Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer”, NASA Ames Research Center, USA, August 1997.
22. D. L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortion”, in Numerical Methods for Fluid Dynamics, edited by K. W. Morton and M. J. Baines, Academic Press, 1982, pp. 273-285.
23. D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, “Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-dimensional Flows”, Journal of Computational Physics, Vol. 152, 1999, pp. 423-456.
24. R. Scardovelli, S. Zaleski, “Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids”, Journal of Computational Physics, Vol. 164, 2000, pp. 228-237.
25. W. J. Rider, D. B. Kothe, “Reconstructing Volume Tracking”, Journal of Computational Physics, Vol. 141, 1998, pp. 112-152.
26. J. U. Brackbill, D. B. Kothe, C. Zemach, “A Continuum Method for Modeling Surface Tension”, Journal of Computational Physics, Vol. 100, 1992, pp. 335-354.
27. D. B. Kothe, R. C. Mjolsness, M. D. Torrey, “RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces”, LA-12007-MS, April 1994.
28. C. W. Hirt, J. P. Shannon, ”Free-Surface Stress Conditions for Incompressible-Flow Calculations”, Journal of Computational Physics, Vol. 2, 1968, pp. 403-411.
29. S. Chen, D. B. Johnson, P. E. Raad, “Velocity Boundary Conditions for the Simulation of Free Surface Fluid Flow”, Journal of Computational Physics, Vol. 116, 1995, pp. 262-276.
30. 吳鉉忠, “壓電式微液滴噴射數學模擬系統之開發與實驗研究”, 國立成功大學材料科學及工程學系博士論文, 2004.
31. C. W. Hirt, B. D. Nichols, N. C. Romero, “SOLA—A Numerical Transient Solution Algorithm for Fluid Flows”, Technical Report LA-5852, Los Alamos Scientific Laboratory, 1975.
32. K. A. Hoffmann, S. T. Chiang, “Computational Fluid Dynamics for Engineers Volume 1”, A Publication of Engineering Education System, 1993.
33. M. Bellet, “Implementation of Surface Tension with Wall Adhesion Effects in a Three-dimensional Finite Element Model for Fluid Flow”, Communications in Numerical Methods in Engineering, Vol. 17, 2001, pp. 563-579.
34. M. Dietzal, S. Haferl, Y. Ventikos, D. Poulikakos, “Marangoni and Variable Viscosity Phenomena in Picoliter Size Solder Droplet Deposition”, Journal of Heat Transfer, Vol. 125, 2003, pp. 365-376.
35. 姚啟文, “95%鉛/5%錫錫膏重流形狀之研究”, 國立成功大學材料科學及工程學系碩士論文,1999.
36. R. Y. Chang, C. C. Hung, W. H. Yang, “Three-Dimensional Cae Analysis of Underfill Flow of Flip-Chips”, ANTEC 2002 Plastics: Annual Technical Conference, Vol. 1: Processing, 2002.