簡易檢索 / 詳目顯示

研究生: 張伯鴻
Chang, Po-Hung
論文名稱: 海水淡化廠出水最佳防蝕方式研究
The optimal control for corrosive effluent from the seawater desalination plant
指導教授: 葉宣顯
Yeh, Hsuan-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 133
中文關鍵詞: RO海水淡化腐蝕後處理腐蝕指標
外文關鍵詞: Desalination, RO, Corrosion, Post-treatment, Corrosion index
相關次數: 點閱:181下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   澎湖烏崁海水淡化廠完工通水後不久所發現之輸配水延性鑄鐵管內水泥砂漿內襯剝落,用戶龍頭出現紅水等情事,經採水樣分析後,可確認係因逆滲透(RO)薄膜出水之鈣、鎂離子濃度、鹼度及TDS等偏低,為腐蝕性水質所導致。
      為研究如何降低海淡廠出水之腐蝕性,本計畫劃先蒐集國內外公共給水對腐蝕性水質之處理方式,特別是海水淡化廠出水之後處理流程。其次實際採集烏崁海淡廠出水,分析其水質。首先藉由理論計算,預測欲達到穩定化防蝕水質所需添加之鹼劑種類及加量。並在實際添加藥劑後,分析水質,計算其腐蝕指標。同時製作與現場輸水管相同材質之金屬試片,依ASTM G31之「實驗室浸泡腐蝕試驗(Laboratory Immersion Corrosion Testings)」方式,實際量測經各種方式化學調理後水樣之腐蝕性,同時分別比較LSI(藍氏飽和指標)、RSI(Ryznar穩定指標)及CCPP(Calcium Carbonate Precipitation Potential, 碳酸鈣沉積潛能)與實測腐蝕速率之相關性。另外,亦將海淡廠出水流經填充不同粒徑大理石濾料之礦物塔,在不同接觸時間及二氧化碳添加量下,取處理水分析水質,再進行與前述添加鹼劑相同之浸泡腐蝕試驗。
      根據本研究之結果,實驗室浸泡腐蝕試驗可有效地運用於海淡廠出水防蝕後處理程序之篩選。但在金屬試片與調理後水質之接觸反應槽內,應注意有適當之攪拌及溶氧之存在。比較「石灰及二氧化碳」、「碳酸氫鈉或碳酸鈉」及「礦物塔」等三種後處理方式之防蝕效果。石灰及二氧化碳為有效之調理方式,在石灰約60 mg/L加量下,加入足量之CO2,使pH值控制在8.0左右,可有良好之防蝕效果。一般而言,當調理後水質之腐蝕指標LSI(藍氏飽和指標) > 0.2,RSI(Ryznar 穩定指標) < 8及CCPP(碳酸鈣沉積潛能) > 0時,腐蝕現象可得到適當之抑制。單獨加碳酸氫鈉或碳酸鈉對腐蝕指標之提昇有限,且所需加量甚大,必須與石灰及二氧化碳共用方能達到適當之防蝕效果。經礦物塔調理之出水可得到與石灰-二氧化碳法相似之水質,因而有相似之防蝕效果。但礦物塔內之大理石填充料之粒徑大小對調理效果顯然有相當大的影響。再者腐蝕指標相同之水質,含鈣比例較高者,其防蝕效果較含鹼度高者為佳,推測應與材料表面碳酸鈣保護層形成有關。

      Shortly after the inauguration of Wu-Kan seawater desalination plant in Peng-Hu, leaching of materials from cement-mortar linings of the ductile-iron pipes and complaints about red-water from the customers were reported. These were thought to be caused by the aggressive effluent from the RO membrane, which removed most ions from seawater.
      The purpose of this research is to select the appropriate post-treatment processes to reduce the corrosiveness of the effluent from the desalination plant. First, the literature, concerned with the corrosion control for public water supply, especially for those involved with seawater desalination, was searched. Then the effluent from the Wu-Kan desalination plant was collected and the water quality analyzed. Based on the result from water quality analysis, the appropriate chemicals and dosage needed to restore its chemical stability were predicted theoretically. After chemical conditioning, the water quality was reanalyzed, and the values of various corrosion indexes were calculated.
      Following the method “Laboratory Immersion Corrosion Testings,” of ASTM G31, the corrosion intensity of the post-treated water was measured. The coupons used in these tests were made of ductile iron. Then correlation between the various corrosion indexes, namely LSI (Langelier Saturation Index), RSI (Ryznar Stability Index), and CCPP (Calcium Carbonate Precipitation Potential), and the lab-measured corrosion rate were evaluated. In addition, alkaline media filter with marble as media and coupling with CO2 addition was also evaluated as alternative post-treatment process.
      Based on the results from this study, the laboratory immersion corrosion testings are effective for evaluating various post-treatment processes for effluent from seawater desalination plant. However, attention should be paid to providing appropriate mixing and dissolved oxygen in the reacting vessel.
      Comparing the corrosion inhibition efficiency of the three post-treatment processes, namely lime and carbon dioxide, sodium bicarbonate or carbonate, and alkaline media filter, the results show that lime and carbon dioxide process was very efficient. At Ca(OH)2 dosage of about 60 mg/L and adding sufficient amount of CO2 to keep pH value at about 8.0, the treated water, with LSI value at about 0.2, was chemically stable concerning corrosion.
      Generally speaking, when the corrosion index of the post-treated water meets the following criteria: LSI 0.2, RSI 8, or CCPP 0, the corrosion rate is limited. Adding only sodium bicarbonate or sodium carbonate, even at very high dosages, was not very effective for corrosion control. These two alkaline agents must be coupled with lime and CO2 in order to adjust the value of corrosion index to the desired range. The water quality of the effluent from the alkaline media filter was similar to that from the lime-CO2 process, and therefore also demonstrated similar corrosion rate. However, the granular size of the alkaline media was found to have profound effect on the performance of the filter. Further, under similar value of corrosion index, the post-treated waters with higher calcium content were found to have lower corrosion rate than those with higher alkalinity value. This probably is related to the formation of protective calcium carbonate layer on metal surface.

    誌謝............................................................................I 摘要..........................................................................III Abstract........................................................................V 目錄..........................................................................VII 圖目錄.........................................................................XI 表目錄.........................................................................XV 第一章 前言.....................................................................1 1-1 研究緣起....................................................................1 1-2 研究目的....................................................................1 1-3 研究範疇....................................................................1 第二章 文獻回顧.................................................................3 2-1 腐蝕原理與種類..............................................................3 2-1-1 腐蝕原理..................................................................3 2-1-2 輸水管之腐蝕機制..........................................................4 2-1-3 腐蝕的種類................................................................7 2-2 管內防蝕技術................................................................9 2-3 腐蝕指標...................................................................13 2-4 腐蝕評估方法...............................................................26 2-4-1 腐蝕直接測定方法.........................................................26 2-4-2 間接測定方法.............................................................28 2-4-3 重量損失法與電化學法之比較...............................................28 2-5 公共給水防蝕技術...........................................................29 2-6 海水淡化廠防蝕技術.........................................................33 第三章 實驗設備與方法..........................................................39 3-1 烏崁海淡廠現場勘查.........................................................39 3-2 實驗流程規劃...............................................................39 3-3 腐蝕性RO水之取得...........................................................39 3-3-1 實廠出水.................................................................39 3-3-2 人工原水.................................................................40 3-4 水質調整...................................................................40 3-4-1 石灰-二氧化碳............................................................41 3-4-2 礦物塔...................................................................42 3-5 重量損失試驗...............................................................45 3-5-1 試片準備.................................................................45 3-5-2 批次式腐蝕試驗設備.......................................................46 3-5-3 重量損失量測.............................................................47 3-6 水質分析方法...............................................................48 3-6-1 總溶解固體(Total Dissolved Solid, TDS)...................................48 3-6-2 導電度(Conductivity, EC).................................................48 3-6-3 pH值....................................................................49 3-6-4 鹼度(Alkalinity).........................................................49 3-6-5 氯離子與硫酸根離子(Cl- & SO42-)..........................................50 3-6-6 鈣離子與鎂離子(Ca2+ & Mg2+)..............................................51 3-6-7 水溶性二氧化碳(Carbon Dioxide, CO2(aq))..................................52 3-6-8 溶氧(Dissolved Oxygen, DO)...............................................52 第四章 結果與討論..............................................................53 4-1 烏崁海水淡化廠出水水質.....................................................53 4-2 導電度與總溶解固體關係.....................................................57 4-3 石灰及二氧化碳防蝕水質調整.................................................60 4-3-1 先加二氧化碳後加石灰.....................................................60 4-3-2 CO2逸散量探討............................................................65 4-3-3 先加石灰後加二氧化碳.....................................................69 4-3-4 攪拌影響.................................................................74 4-3-5 曝氣影響.................................................................78 4-4 碳酸鈉與碳酸氫鈉...........................................................83 4-4-1 人工原水之防蝕水質調整...................................................83 4-4-2 以碳酸氫鈉調整後之腐蝕速率...............................................86 4-5 礦物塔.....................................................................90 4-5-1 大理石A填充材礦物塔......................................................90 4-5-2 大理石B填充材礦物塔......................................................90 4-5-3 礦物塔操作建議...........................................................91 4-6 石灰與碳酸氫鈉配比對腐蝕速率之影響........................................100 4-6-1 相似LSI ,不同鈣濃度之腐蝕速率比較......................................101 4-6-2 相似CCPP ,不同鈣濃度之腐蝕速率比較.....................................104 4-6-3 不同石灰配比之腐蝕指標與腐蝕速率關係....................................107 4-7 腐蝕指標適用性比較........................................................111 第五章 結論與建議.............................................................115 參考文獻......................................................................117 附錄A. 浸泡試驗後清洗次數與重量損失關係表.....................................124 附錄B. 浸泡試驗後清洗次數與重量損失關係圖.....................................129 附錄C. CCPP試算程式畫面......................................................133

    Al-Awadi, F. and Abdel-Jawad, M. (1987) “Evaluation of the Three Post-Treatment System at Doha Seawater Reverse Osmosis Plant-Kuwait,” Desalination, Vol. 63, pp.109~117.

    APHA, AWWA, & WEF (1998) Standard Methods for the Examination of Water and Wastewater, 20th Ed.

    Applegate, L. E. (May 1986) “Posttreatment of Reverse Osmosis Product Waters”, Jour. AWWA, pp.59~65.

    Arrayedhy, M. Al (1987) “Pre- and Post-Treatment at the RO Plant at RA’s Abu Jarjur, Bahrain,” Desalination, Vol. 63, pp.81~94.

    AWWA (1986) Corrosion Control for Operators, AWWA Research Foundation, Denver, CO.

    AWWA (1987) External Corrosion - Introduction to Chemistry and Control, AWWA Manual 27, Denver, CO.

    AWWA (1989) Economics of Internal Corrosion Control, AWWA Research Foundation, Denver, CO.

    AWWA (1991) Control of Water Quality Deterioration Caused by Corrosion for Cement-Mortar Pipe Linings, AWWA Research Foundation, Denver, CO.

    AWWA (1994) An Assessment of Water Distribution Systems and Associated Research Needs, AWWA Research Foundation, Denver, CO.

    Ball, J. W., Jenne, E.A., & Nordstrom, D. K. (1979) WATEQ2─A Computerized Chemical Model for Trace and Major Element Speciation and Mineral Equilibria of Natural Waters, ACS Symposium Series 93 (E. A. Jenne, editor). Amer. Chem. Soc., Washington.

    Ball, J. W., Jenne, E. A., & Cantrell, M. W. (1981) WATEQ3─A Geochemical Model With Uranium Added, USGS Open File Report 81-1183.

    Ball, J. W., Nordstrom, D. K., & Zachmann, D. W. (1987) WATEQ4F─A Personal Computer FORTRAN Translation of the Geochemical Model WATEQ2 With Revised Data Base, USGS Open File Report 87-50.

    Bell, W. E. et al.(1970) Water Technology, Office of Saline Water R & D 536.
    Benjamin, L., Green, R. W., Smith, A. and Summer, S. (May 1992) “Pilot Testing a Limestone Contactor in British Columbia,” Jour. AWWA, pp.70~79.

    Bopp, C.D. and Reed, S.A. (1971) Stabilization of Product Water From Seawater Distillation Plants, Office of Saline Water R & D 709.

    Caldwell, D. H. & Lawrence, W. B. (1953) Water Softening and Conditioning Problems, Industrial Engrg. Chem., 45:3:535.

    Carew, J., Abdel-Jawad, M., Julka, A., and Al-Wazzan, Y. (1989) “Performance of Materials Used in Seawater Reverse Osmosis Plants,” Desalination, Vol. 74, pp.85~112.

    Chen, C. A., McAnally, A. S., and Kumaraswamy, S. (1994) Lead and Copper Corrosion Control, J. Environ. Sci. Health, A29, No.8, pp.1587~1606.

    Cohen, A. and Myers, J. R. (1984) “Mitigating Copper Pitting Through Water Treatment,” Jour. AWWA, Vol. 79, No.2, pp. 58~61.

    Committee Report (1995) “Determining Internal Corrosion Potential in Water Supply Systems,” Jour. AWWA, Vol. 76, No.8, pp. 83~88.

    Dietrich, Wendell F. (1967), Corrosion Test Program, Office of Saline Water R & D 244.

    Dye, J.F. (Apr. 1952) “Calculation of the Effect of Temperature on pH, Free Carbon Dioxide and the Three Forms of Alkalinity,” Jour. AWWA, 44:4:356.

    Duranceau, Steven J. (1993) “Membrane Process Post-Treatment,” 1993 Membrane Technology Conference Proceedings; American Water Works Association, pp.1~16.

    Economic and Engineering Services Inc. (1990) Lead Control Strategies, AWWARF, Denver, CO.

    Edwards, M., Ferguson, J. F. and Reiber, S. H. (1994) “The Pitting Corrosion of Copper,” Jour. AWWA, Vol. 86, No. 7, pp. 74~90.

    El-Twaty, A.I. and Karshman, S.A. (1989) “Experience With Desalination Plants in Libya,” Desalination, Vol. 73, pp.385~396.

    Faust, S.D. & Aly, O.M.(1999) Chemistry of Water Treatment, 2nd Ed., CRC Press LLC, Boca Raton, Florida, pp. 437~481.

    Ferguson, J. F., Benjamin M. M. and Reiber, S. (1991) “The Develop of a Corrosion Assessment Methodology,” Corrosion and Corrosion Control in Drinking Water Systems, Proceedings from a Corrosion Workshop and Seminar in Oslo, No. 3, pp. 17~21.

    Hedberg, T., Vik, E. A., Wagner, I., Oliphant, R., Ferguson, J.F., T. van den Hoven, Benjamin, M. M. S. R., Nielsen, K., Paakkonen, J., Fiksdal, L., and Forslund, J. (1990) “The Influence of Water Quality on Different Pipe Materials and House Installation-Conclusions from the Workshop,” Corrosion and Corrosion Control in Drinking Water Systems, Proceedings from a Corrosion Workshop and Seminar in Oslo, No. 3, pp. 1~4.

    Hedberg, T. (1990) “Swedish Experience in Reducing Water Mains Corrosion with CO2 and Lime Additions,” Corrosion and Corrosion Control in Drinking Water Systems, Proceedings from a Corrosion Workshop and Seminar in Oslo, No.3, pp. 49~53.

    Holm, T. R. and Shock, M. R. (1998) “Computing SI and CCPP Using Spreadsheet Program,” Jour. AWWA, Vol. 90, No. 7, pp. 80~89.

    Ingle, S. E.; Keniston, J. A. & Schults, D.W. R. (1980) “EPAK: Aqueous Chemical Equilibrium Computer Program,” EPA 600/3-80-049.

    Ishioka, M. (2003) “The Design of the Corrosion Control Facility,” Proceeding ⅩⅢ IWA-ASPAC Regional Conference, pp.508~514.

    Karalekas, P. C. Jr., Ryan, C. R., and Taylor, F. B. (1983) “Control of Lead, Copper, and Iron Pipe Corrosion in Boston,” Jour. AWWA, Vol. 75, No.2, pp.92~95.
    Kasper, Dennis R. (1993) “Pre- and Post-Treatment Processes for Membrane Water Treatment Systems,” 1993 Membrane Technology Conference Proceedings; American Water Works Association, pp.105~137.

    Langelier, W.F. (1936) “The Analytical Control of Anticorrosion Water Treatment,” Jour. AWWA, 28:1500.

    Langelier, W.F. (1946) “Chemical Equilibria in Water Treatment,” Jour. AWWA, 38:2:169.

    Lebedev, A.N., Derbyshev, A.S., and Kabluchko, N.A. (1983) “Some Results of the Investigation on Corrosion Protection of Desalination Plant Equipment,” Desalination, Vol. 44, pp.233~239.

    Loewenthal, R. E. & Marais, G. V. R. (1976) Carbonate Chemistry of Aquatic Systems: Theory and Applications, Ann Arbor Science Publ., Ann Arbor, Mich.
    Merrill, D.T. (1976) “Chemical Conditioning for Water Softening and Corrosion Control,” Water Treatment Plant Design (R.L. Sanks, editor) Ann Arbor Science Publ., Ann Arbor, Mich.

    Merrill, D. T. & Sanks, R. L. (1977a) “Corrosion Control by Deposition of CaCO3 Films: Part1, A Practical Approach for Plant Operators,” Jour. AWWA, Vol. 68, No. 11, pp. 592~599.

    Merrill, D. T. & Sanks, R. L. (1977b) “Corrosion Control by Deposition of CaCO3 Films: Part2, A Practical Approach for Plant Operators,” Jour. AWWA, Vol. 68, No. 12, pp. 635~640.

    Merrill, D. T. & Sanks, R. L. (1978) “Corrosion Control by Deposition of CaCO3 Films: Part3, A Practical Approach for Plant Operators,” Jour. AWWA, Vol. 69, No. 1, pp. 12~18.

    Shock, M. R. (1999) “Internal Corrosion and Deposition Control,” Chapter in Water Quality and Treatment: A Handbook of Community Water Supplies, McGraw–Hill, New York.

    Millette, J. R., Hammonds, A.F., Pansing, M. F., Hansen, E. C. and Clark, P. J. (1980) “Aggressive Water Assessing the Extent of the Problem,” Jour. AWWA, Vol. 72, No. 5, pp.262~266.

    Morel, F. M. M. & Morgan, J. J. (1972) “A Numerical Method for Computing Equilibria in Aqueous Systems,” Envir. Sci . & Technol., 6:58.

    Morel, F. M. M. (1975) “Fate of Trace Metals in Los Angeles County Wastewater Discharge,” Envir. Sci. & Technol., 9:756.

    Nordstrom, D.K. (1979) “Comparison of Computerized Chemical Models for Equilibrium Calculations in Aqueous Systems,” ACS Symposium Series 93 (E. A. Jenne, editor), Amer. Chem. Soc., Washington.

    Plummer, L. N., Jones, B. F., & Truesdell, A. H. (1976) WATEQF─A FORTRAN Version of WATEQ, a Computer Program for Calculating Chemical Equilibrium of Natural Waters, USGS Water Resources Investigation 76-13.

    Porter, R. L. and Ferguson, J. F. (1995) “Improved Monitoring of Corrosion Processes,” Jour. AWWA, Vol. 87, No. 10, pp. 85~95.

    Reiber, S. H. (1989) “Copper Plumbing Surfaces: An Electrochemical Study,” Jour. AWWA, Vol. 81, No. 7, pp.114~122.

    Reiber, S. H., Ferguson, J. F. and Benjamin, M. M. (1988) “An Improved Method for Corrosion-rate Measurement by Weight Loss,” Jour. AWWA, Vol. 80, No. 11.

    Rich, L. (1963) Unit Process of Sanitary Engineering, John Wiley & Sons, New York.

    Richards, W. N. and Moore. M. R.(1984) “Lead Hazard Controlled in Scottish Water Systems,” Jour. AWWA, Vol. 76, No. 8, pp.60~67.

    Rosnie, R. and Shock, M. R. (1990) “The Use of Pipe Loop Tests for Corrosion Control Diagnostics,” Water Quality Technology Conference, San Diego, California.

    Rossum, J. R. and Merrill, D. T. (1983) “An Evaluation of the Calcium Carbonate Saturation Indexes,” Jour. AWWA, Vol. 75, No. 2, pp. 95~100.

    Ryznar, J. W. (1944) “A New Index for Determining Amount of Calcium Carbonate Scale Formed by Water,” Jour. AWWA, 36:472.

    Single, J. E. (1981) “The Search for a Corrosion Index,” Jour. AWWA, Vol. 73, No. 11, pp. 579~582.

    Single, J. E. and Lee, T. Y. (1984) “Pipe Loop Augments Corrosion Studies,” Jour. AWWA, Vol. 76, No. 8, pp.76~82.

    Stumm, W. and Morgan, J. J. (1996) Aquatic Chemistry - An Introduction Emphasizing Chemical Equilibrium in Nature Waters, 3rd Ed, John Wiley & Sons, Inc., New York.

    Shock, M. R., Logsdon, G. S., & Clark, P. J. (1981) Evaluation and Control of Asbestos─Cement Pipe Corrosion, EPA 600/D-81-067, Cincinnati, Ohio.

    Shock, M. R. & Buelow, R. W. (1981) “The Behavior of Asbestos ─ Cement Pipe Under Various Water Quality Conditions: Part 2, Theoretical Considerations,” Jour. AWWA, 73:12:636.

    Treweek, G. P., Glicker J., Chow B., and Sprinker, M. (1985) “Pilot-plant Simulation of Corrosion in Domestic Pipe Materials,” Jour. AWWA, Vol. 77, No. 10, pp. 74~82.

    Troiano, A.R. and Heheman, R.F. (1970), A base Study of Ferrous Materials for Desalination Equipment, Office of Saline Water R & D 637.

    Truesdell, A. H. & Jones, B. F. (1974) “WATEQ, A Computer Program for Calculating Chemical Equilibria in Natural Waters,” USGS Jour. Res., 2:233.

    Uhlig, H. H. and Revie, R.W. (1991) Corrosion and Corrosion Control - An Introduction to Corrosion Science and Engineering, John Wiley & Sons, New York.

    Van den Hoven, Th. J. J. and Van Eekeren, M. W. M. (1988) Optimal Composition of Drinking Water, KIWA, Nieuwegein, the Netherlands.

    Vik, E. A., and Weideborg, M. (1990) “Corrosion Control and Corrosion Monitoring in Low Alkalinity Waters-Norwegian Experience,” Corrosion and Corrosion Control in Drinking Water Systems, Proceedings from a Corrosion Workshop and Seminar in Oslo, No.3, pp.55~62.

    Walton, N.R.G., (1989) “Electrical Conductivity and Total Dissolved Solids – What is Their Precise Relationship?” Desalination, Vol.72, pp.275~292.

    Wigley, R. M. L. (1977) “WATSPEC: A Computer Program for Determining the Equilibrium Speciation of Aqueous Solutions,” British Geomorph. Res. Group Tech. Bull., 20.

    林建財、李志強(1985),「蘇澳供水水質腐蝕性之調查及改善研究報告」,自來水會刊雜誌,第16期,第75~105頁,民國74年。

    台北自來水事業處(1993),「球狀石墨鑄鐵直管與管件規格(K.A.F.型)」,台北自來水事業處(工程總隊)編印,台北。

    中華民國自來水協會(1995),「輸配水管線用水管及管件規格標準化之研究」,台北。
    康世芳等(1996),水管防蝕方法之研究,台北自來水事業處委託研究報告。

    陳重男、倪振鴻、黃財榮、金艾棣(2001),「薄膜處理在自來水淨水工程上之應用(第二年)」,中華民國自來水協會90年度研究報告。

    康世芳等(2003),自來水管線腐蝕之檢討與防蝕策略,中華民國自來水協會。

    下載圖示 校內:立即公開
    校外:2004-08-06公開
    QR CODE