簡易檢索 / 詳目顯示

研究生: 葛清侑
Ge, Qing-You
論文名稱: 末期腎臟病前期 (pre-ESRD) 個案短期內發生透析事件之預測模式建構--- 就醫與社會人口學特徵的角色
Construction of predictive models for short-term dialysis events in patients with pre-end-stage renal disease (pre-ESRD): the role of medical treatment and sociodemographic characteristics
指導教授: 王亮懿
Wang, Liang-Yi
學位類別: 碩士
Master
系所名稱: 醫學院 - 公共衛生學系
Department of Public Health
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 慢性腎臟病末期腎臟病前期透析預測模型
外文關鍵詞: Chronic kidney disease, pre-ESRD, dialysis, prediction model
相關次數: 點閱:67下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景 慢性腎臟病(CKD)第3~5期稱之末期腎臟病前期(pre-ESRD),若沒有良好控制,短期內可能需要進行透析治療,導致家庭與社會沉重負擔。若能了解社會人口學、就醫、共病等非臨床檢驗數值之變項對短期進入透析治療的影響,甚至建構預測模型,將有助於提前準備或積極介入。
    研究目的 建構20-79歲慢性腎臟病第3-5期(末期腎臟病前期,pre-ESRD)病人一年內發生透析事件的預測模型。並探討社會人口學、就醫、共病等非臨床檢驗數值之變項對一年內進入透析治療的影響效應。
    研究方法 本研究採回溯型世代研究法(Retrospective cohort study),以全民健保資料庫、戶籍檔作為資料來源,挑選2016年20-79歲慢性腎臟病第3-5期且尚未進入透析之盛行個案,以進入研究日期(指標日,Index date)之社會人口學、一年內的共病、前一年就醫狀況與頻率等變項,建構指標日後一年內發生透析事件之預測模型,檢視其模型預測能力,並探討影響因子之效應。
    研究結果 本研究納入2016年20-79歲第3-5期CKD盛行個案共93,579人。納入社會人口學、一年內的共病、前一年就醫狀況與頻率等變項,利用邏輯斯迴歸進行建模。結果發現皆以逐步選取法(Stepwise)的效果較佳。第3-5期預測模型的表現,ROC曲線下面積(AUC)為0.84、模型的敏感度為0.67、特異度為0.84、陽性預測值為0.33、陰性預測值為0.96及F1-Score為44.2。以年齡層偏低、疾病嚴重程度較高、教育程度為國中學歷、未婚者較多、戶籍地位於北部地區以及低度都市化。CKD之就醫狀況與頻率部分,A時段(指標日前12個月至前7個月)就醫狀況包含有「CKD急診」、「其他疾病急診」、「CKD住院」及「其他疾病住院」的比例較高,就醫頻率則是「CKD急診次數」。B時段(指標日前6個月至指標日)就醫狀況包含有「CKD急診」、「其他疾病急診」及「其他疾病住院」,就醫頻率則是「CKD門診次數」及「CKD住院次數」。共病部分,罹患心臟衰竭、糖尿病、糖尿病伴隨慢性併發症的個案,以上因素導致3-5期個案一年內發生透析的風險較高。第5期預測模型的表現,ROC曲線下面積(AUC)為0.64、模型的敏感度為0.78、特異度為0.38、陽性預測值為0.33、陰性預測值為0.80及F1-Score為49.2。以年齡層40-49歲、教育程度為國小以下、未婚者較多、戶籍地位於北部地區以及低度都市化。CKD之就醫狀況與頻率部分,A時段(指標日前12個月至前7個月)就醫狀況包含有「CKD急診」、「其他疾病急診」。B時段(指標日前6個月至指標日)就醫狀況包含有「CKD急診」、「其他疾病急診」,就醫頻率則是「CKD門診次數」、「CKD住院次數」以及參與pre-ESRD P4P計畫的申報次數。共病部分,罹患心臟衰竭、糖尿病、糖尿病伴隨慢性併發症的個案,以上因素導致5期個案一年內發生透析的風險較高。
    結論 社會人口學、就醫頻率與狀況、共病等資料,雖非臨床檢驗數值,但對短期發生透析事件具有預測能力,預測第3~5期個案發生透析的效果尚可,預測第5期個案的效果較差。本研究結果可作為建構次級資料監測pre-ESRD個案不良健康結果預測模型之參考。
    關鍵字:慢性腎臟病、末期腎臟病前期、透析、預測模型

    Background: Chronic Kidney Disease (CKD) and End Stage Renal Disease (ESRD) are collectively referred to as important chronic disease that cause abnormal renal function, which are the main targets of global public health prevention and treatment. In 2017, the number of chronic cases worldwide was 69.75 million, attributable to approximately 1.2 million deaths from CKD, with a disease prevalence rate of 9.1%. CKD often progresses to the end-stage at the time of diagnosis, and CKD patients need to undergo renal replacement therapy as soon as possible. In Taiwan, due to insufficient kidney sources, patients wait too long for kidney transplantation. Currently, the proportion of patients receiving kidney transplantation therapy is very small. Therefore, the preferred treatment for CKD patients in my country is dialysis, which requires a long course of treatment, and the timing of starting treatment is more important, which will affect the survival rate and quality of life of patients. Several papers around the world have discussed the development of predictive models for the progression of CKD and the timing of individual cases entering treatment. However, for CKD, few literatures use non-clinical data to build relevant predictive outcome models, such as sociodemographic data.
    Objectives: Our study collect Prevalent cases of chronic kidney disease stage 3-5 in 20-79 years old and not yet on dialysis in 2016.Using the sociodemographic variables of the index date and the comorbidities, medical treatment status and frequency of the previous year as possible determinants, a predictive model for the occurrence of dialysis events within one year of the index date was constructed, and its impact was discussed. factors and effects.
    Methods: The chi-square test was used to analyze whether there were significant differences in the characteristics of CKD patients with or without dialysis within one year, such as sociodemographics, comorbidities in the previous year, and the status and frequency of medical visits in the previous year in our study.Then, using the logistic regression method, variables such as sociodemographic variables, medical treatment status and frequency, and comorbidities were added to establish the occurrence of dialysis events in the 3rd to 5th and 5th phases of CKD cases within one year from the index date. Predictive model of whether or not. In addition to presenting the fit and efficacy of the model to the data, the effects of each variable on the occurrence of dialysis events within one year of the index date were discussed.
    Results: This study included a total of 93,579 20-79-year-old CKD cases in 2016. Logistic regression was used to model variables including sociodemographics, comorbidities within one year, and the status and frequency of medical visits in the previous year. The results show that the effect of stepwise selection is better. Phases 3-5 predicted model performance with an area under the ROC curve (AUC) of 0.84, model sensitivity of 0.67, specificity of 0.84, positive predictive value of 0.33, negative predictive value of 0.96 and F1-Score of 44.2. The age group is lower, the severity of the disease is higher, the education level is middle school education, the number of unmarried people is more, the household registration is located in the northern region, and the urbanization is low. In the part of medical treatment status and frequency of CKD, the proportion of medical treatment status in period A (12 months to the first 7 months before the index date) includes "CKD emergency", "other diseases emergency", "CKD hospitalization" and "other diseases hospitalization" High, the frequency of medical treatment is "the number of CKD emergency department". During the B period (6 months before the index day to the index day), the medical conditions include "CKD emergency", "other diseases emergency" and "other diseases hospitalization", and the frequency of medical treatment is "CKD outpatient number" and "CKD hospitalization number". In the comorbidity part, patients with heart failure, diabetes, and chronic complications of diabetes have a higher risk of developing dialysis within one year of stage 3-5 due to the above factors. Phase 5 predictive model performance, the area under the ROC curve (AUC) was 0.64, the model sensitivity was 0.78, the specificity was 0.38, the positive predictive value was 0.33, the negative predictive value was 0.80, and the F1-Score was 49.2. The age group is 40-49 years old, the education level is below the national primary school, there are many unmarried people, the household registration is located in the northern region, and the urbanization is low. The medical treatment status and frequency of CKD, the medical treatment status in period A (12 months to the first 7 months before the index date) includes "CKD emergency" and "other diseases emergency". During the B period (6 months before the index day to the index day), the medical conditions include "CKD emergency", "other diseases emergency", and the frequency of medical visits is "CKD outpatient number", "CKD hospitalization number" and participation in the pre-ESRD P4P plan number of reports. In the comorbidity part, patients with heart failure, diabetes, and diabetes accompanied by chronic complications have a higher risk of developing dialysis within one year of stage 5 cases due to the above factors.
    Conclusions: The sociodemographic variables include age, disease severity, education level, marital status and urbanization, and among the medical conditions and frequency, the medical conditions include CKD emergency department and emergency medical treatment for other diseases. The frequency of CKD outpatient visits and CKD hospitalizations, and co-morbidities such as heart failure, chronic lung disease, dementia, diabetes, chronic complications of diabetes, and malignant tumors are all significant factors that affect the occurrence of dialysis events.
    Keywords: Chronic kidney disease, pre-ESRD, dialysis, prediction model.

    壹、緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 貳、文獻回顧 3 第一節 慢性腎臟病分期與照護 3 第二節 CKD患者進入透析的影響因素 10 第三節 CKD患者發生透析事件之預測模型 14 第四節 小結 22 參、研究方法 23 第一節 資料來源 23 第二節 研究設計 23 第三節 變項定義 25 第四節 統計方法 29 肆、研究結果 32 第一節 CKD個案一年內發生透析情形 32 第二節 建構一年內發生透析之模型 (第3-5期) 33 第三節 建構一年內發生透析之模型 (第5期) 35 伍、討論 53 第一節 社會人口學因素影響發生透析事件之與否探討 53 第二節 就醫狀況與頻率因素影響發生透析事件與否之探討 55 第三節 共病因素影響發生透析事件與否之探討 57 第四節 研究優勢與研究限制 59 陸、結論 60 柒、參考文獻 61

    Abe, M., Akaishi, T., Ishizawa, K., Shinano, H., Ohtomo, H., Orikasa, K., . . . Ishii, T. (2022). A massive natural disaster, the great east japan earthquake, and the incidence of dialysis due to end-stage kidney disease. Journal of Nephrology, 35(3), 719-724. doi:10.1007/s40620-021-01140-9
    Ammirati, A. L. (2020). Chronic kidney disease. Revista da Associacao Medica Brasileira (1992), 66Suppl 1(Suppl 1), s03-s09. doi:10.1590/1806-9282.66.S1.3
    Ben-David, E., Hull, R., & Banerjee, D. (2021). Diabetes mellitus in dialysis and renal transplantation. Therapeutic Advances in Endocrinology and Metabolism, 12, 20420188211048663. doi:10.1177/20420188211048663
    Best, P. J. M., Reddan, D. N., Berger, P. B., Szczech, L. A., McCullough, P. A., & Califf, R. M. (2004). Cardiovascular disease and chronic kidney disease: Insights and an update. American Heart Journal, 148(2), 230-242. doi:10.1016/j.ahj.2004.04.011
    Bloembergen, W. E., Port, F. K., Mauger, E. A., & Wolfe, R. A. (1995). A comparison of mortality between patients treated with hemodialysis and peritoneal-dialysis. Journal of the American Society of Nephrology, 6(2), 177-183. doi: 10.1681/ASN.V62177
    Bowling, C. B., Plantinga, L., Phillips, L. S., McClellan, W., Echt, K., Chumbler, N., . . . Johnson, T. M. (2017). Association of multimorbidity with mortality and healthcare utilization in chronic kidney disease. Journal of the American Geriatrics Society, 65(4), 704-711. doi:10.1111/jgs.14662
    Chang, H.-L., Wu, C.-C., Lee, S.-P., Chen, Y.-K., Su, W., & Su, S.-L. (2019). A predictive model for progression of ckd. Medicine, 98(26), e16186. doi:10.1097/md.0000000000016186
    Cheng, S., & Coyne, D. (2007). Vitamin D and outcomes in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 16(2), 77-82. doi:DOI 10.1097/MNH.0b013e32802ef494
    Chittora, P., Chaurasia, S., Chakrabarti, P., Kumawat, G., Chakrabarti, T., Leonowicz, Z., . . . Bolshev, V. (2021). Prediction of chronic kidney disease-a machine learning perspective. IEEE Access, 9, 17312-17334. doi:10.1109/access.2021.3053763
    Couser, W. G., Remuzzi, G., Mendis, S., & Tonelli, M. (2011). The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney International, 80(12), 1258-1270. doi:10.1038/ki.2011.368
    Crews, D. C., Gutiérrez, O. M., Fedewa, S. A., Luthi, J.-C., Shoham, D., Judd, S. E., . . . McClellan, W. M. (2014). Low income, community poverty and risk of end stage renal disease. BMC Nephrology, 15(1), 192. doi:10.1186/1471-2369-15-192
    Crews, D. C., McClellan, W. M., Shoham, D. A., Gao, L. Y., Warnock, D. G., Judd, S., . . . Powe, N. R. (2012). Low income and albuminuria among regards (reasons for geographic and racial differences in stroke) study participants. American Journal of Kidney Diseases, 60(5), 779-786. doi:10.1053/j.ajkd.2012.05.010
    de Boer, I. H., Afkarian, M., & Tuttle, K. R. (2016). The surging tide of diabetes: implications for nephrology. American Journal of Kidney Diseases, 67(3), 364-366. doi:10.1053/j.ajkd.2015.12.002
    Dovgan, E., Gradisek, A., Lustrek, M., Uddin, M., Nursetyo, A. A., Annavarajula, S. K., . . . Syed-Abdul, S. (2020). Using machine learning models to predict the initiation of renal replacement therapy among chronic kidney disease patients. Plos One, 15(6), 18. doi:10.1371/journal.pone.0233976
    Duni, A., Dounousi, E., Pavlakou, P., Eleftheriadis, T., & Liakopoulos, V. (2020). Hypertension in chronic kidney disease: novel insights. Current Hypertension Reviews, 16(1), 45-54. doi:10.2174/1573402115666190415153554
    Fan, Z., Lackland, D. T., Lipsitz, S. R., Nicholas, J. S., Egan, B. M., Tim Garvey, W., & Hutchison, F. N. (2007). Geographical patterns of end-stage renal disease incidence and risk factors in rural and urban areas of South Carolina. Health & Place, 13(1), 179-187. doi:10.1016/j.healthplace.2005.12.002
    Fenton, S. S. A., Schaubel, D. E., Desmeules, M., Morrison, H. I., Mao, Y., Copleston, P., . . . Kjellstrand, C. M. (1997). Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. American Journal of Kidney Diseases, 30(3), 334-342. doi:10.1016/s0272-6386(97)90276-6
    Garcia, G. G., Harden, P., Chapman, J., & World Kidney Day Steering, C. (2012). The global role of kidney transplantation. Kidney & Blood Pressure Research, 35(5), 299-304. doi:10.1159/000337044
    Gutierrez, O. M. (2015). Contextual poverty, nutrition, and chronic kidney disease. Advances in Chronic Kidney Disease, 22(1), 31-38. doi:10.1053/j.ackd.2014.05.005
    Hardy, R., Kuh, D., Whincup, P. H., & Wadsworth, M. E. (2006). Age at puberty and adult blood pressure and body size in a British birth cohort study. Journal of Hypertension, 24(1), 59-66. doi:10.1097/01.hjh.0000198033.14848.93
    Hawley, C. M., Jeffries, J., Nearhos, J., & Van Eps, C. (2008). Complications of home hemodialysis. Hemodialysis International, 12, S21-S25. doi:10.1111/j.1542-4758.2008.00291.x
    Hou, F., Jiang, J., Chen, J., Yu, X., Zhou, Q., Chen, P., . . . Xu, X. (2012). China collaborative study on dialysis: a multi-centers cohort study on cardiovascular diseases in patients on maintenance dialysis. BMC Nephrol, 13, 94. doi:10.1186/1471-2369-13-94
    Hsieh, H. M., Lin, M. Y., Chiu, Y. W., Wu, P. H., Cheng, L. J., Jian, F. S., . . . Hwang, S. J. (2017). Economic evaluation of a pre-ESRD pay-for-performance programme in advanced chronic kidney disease patients. Nephrology Dialysis Transplantation, 32(7), 1184-1194. doi:10.1093/ndt/gfw372
    Htay, H., Johnson, D. W., Craig, J. C., Teixeira-Pinto, A., Hawley, C. M., & Cho, Y. J. (2020). Urgent-start peritoneal dialysis versus conventional-start peritoneal dialysis for people with chronic kidney disease. Cochrane Database of Systematic Reviews(12), 70. doi:10.1002/14651858.CD012913.pub2
    Hu, H. Y., Jian, F. X., Lai, Y. J., Yen, Y. F., Huang, N., & Hwang, S. J. (2019). Patient and provider factors associated with enrolment in the pre-end-stage renal disease pay-for-performance programme in Taiwan: a cross-sectional study. BMJ Open, 9(9), 9. doi:10.1136/bmjopen-2019-031354
    Jiang, G. Z., Hu, C., Tam, C. H. T., Lau, E. S. H., Wang, Y., Luk, A. O. Y., . . . Ma, R. C. W. (2016). Genetic and clinical variables identify predictors for chronic kidney disease in type 2 diabetes. Kidney International, 89(2), 411-420. doi:10.1016/j.kint.2015.09.001
    Kario, K., Yamamoto, E., Tomita, H., Okura, T., Saito, S., Ueno, T., . . . Investigators, S. H.-J. (2019). Sufficient and persistent blood pressure reduction in the final long-term results from symplicity htn-japan - safety and efficacy of renal denervation at 3 years. Circulation Journal, 83(3), 622-+. doi:10.1253/circj.CJ-18-1018
    Keddis, M. T., & Rule, A. D. (2013). Nephrolithiasis and loss of kidney function. Current Opinion in Nephrology and Hypertension, 22(4), 390-396. doi:10.1097/MNH.0b013e32836214b9
    Kutner, N., Bowles, T., Zhang, R., Huang, Y. J., & Pastan, S. (2008). Dialysis facility characteristics and variation in employment rates: a national study. Clinical Journal of the American Society of Nephrology, 3(1), 111-116. doi:10.2215/cjn.02990707
    Lee, M. J., Park, J. H., Moon, Y. R., Jo, S. Y., Yoon, D., Park, R. W., . . . Kim, H. (2018). Can we predict when to start renal replacement therapy in patients with chronic kidney disease using 6 months of clinical data? Plos One, 13(10), 14. doi:10.1371/journal.pone.0204586
    Lerner, B., Desrochers, S., & Tangri, N. (2017). Risk prediction models in ckd. Seminars in Nephrology, 37(2), 144-150. doi:10.1016/j.semnephrol.2016.12.004
    Li, L., Pei, H. L., Liu, Z. H., & Zhang, J. J. (2021). Analysis of risk factors and construction of prediction model of drop out from peritoneal dialysis. Medicine, 100(3), 8. doi:10.1097/md.0000000000024195
    Lin, M. Y., Cheng, L. J., Chiu, Y. W., Hsieh, H. M., Wu, P. H., Lin, Y. T., . . . Hwang, S. J. (2018). Effect of national pre-ESRD care program on expenditures and mortality in incident dialysis patients: a population-based study. Plos One, 13(6), 13. doi:10.1371/journal.pone.0198387
    Luyckx, V. A., Tuttle, K. R., Garcia-Garcia, G., Gharbi, M. B., Heerspink, H. J. L., Johnson, D. W., . . . White, S. L. (2017). Reducing major risk factors for chronic kidney disease. Kidney International Supplements, 7(2), 71-87. doi:10.1016/j.kisu.2017.07.003
    MacRae, C., Mercer, S. W., Guthrie, B., & Henderson, D. (2021). Comorbidity in chronic kidney disease: a large cross-sectional study of prevalence in Scottish primary care. British Journal of General Practice, 71(704), E243-E249. doi:10.3399/bjgp20X714125
    Marks, A., Fluck, N., Prescott, G. J., Robertson, L., Simpson, W. G., Smith, W. C., & Black, C. (2015). Looking to the future: predicting renal replacement outcomes in a large community cohort with chronic kidney disease. Nephrology Dialysis Transplantation, 30(9), 1507-1517. doi:10.1093/ndt/gfv089
    Marshall, M. R., Hawley, C. M., Kerr, P. G., Polkinghorne, K. R., Marshall, R. J., Agar, J. W. M., & McDonald, S. P. (2011). Home hemodialysis and mortality risk in australian and new zealand populations. American Journal of Kidney Diseases, 58(5), 782-793. doi:10.1053/j.ajkd.2011.04.027
    Martini, A., Ammirati, A., Garcia, C., Andrade, C., Portela, O., Cendoroglo, M. S., & Sesso, R. (2018). Evaluation of quality of life, physical, and mental aspects in longevous patients with chronic kidney disease. International Urology and Nephrology, 50(4), 725-731. doi:10.1007/s11255-018-1813-1
    Marwick, T. H., Amann, K., Bangalore, S., Cavalcante, J. L., Charytan, D. M., Craig, J. C., . . . Conference, P. (2019). Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 96(4), 836-849. doi:10.1016/j.kint.2019.06.025
    McCullough, P. A., Li, S. Y., Jurkovitz, C. T., Stevens, L., Collins, A. J., Chen, S. C., . . . Investigators, K. (2008). Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality. American Heart Journal, 156(2), 277-283. doi:10.1016/j.ahj.2008.02.024
    McDonald, S. (2010). Incidence and treatment of ESRD among indigenous peoples of australasia. Clinical Nephrology, 74, S28-S31. doi: 10.5414/cnp74s028
    McGregor, D. O., Buttimore, A. L., Lynn, K. L., Nicholls, M. G., & Jardine, D. L. (2001). A comparative study of blood pressure control with short in-center versus long home hemodialysis. Blood Purification, 19(3), 293-300. doi:10.1159/000046957
    Meier-Kriesche, H. U., & Kaplan, B. (2002). Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes - a paired donor kidney analysis. Transplantation, 74(10), 1377-1381. doi:10.1097/00007890-200211270-00005
    Michel, A., Pladys, A., Bayat, S., Couchoud, C., Hannedouche, T., & Vigneau, C. (2018). Deleterious effects of dialysis emergency start, insights from the French REIN registry. BMC Nephrol, 19(1), 233. doi:10.1186/s12882-018-1036-9
    Muntner, P., Anderson, A., Charleston, J., Chen, Z., Ford, V., Makos, G., . . . Investigators, C. S. (2010). Hypertension awareness, treatment, and control in adults with ckd: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. American Journal of Kidney Diseases, 55(3), 441-451. doi:10.1053/j.ajkd.2009.09.014
    Niang, A., Iyengar, A., & Luyckx, V. A. (2018). Hemodialysis versus peritoneal dialysis in resource-limited settings. Current Opinion in Nephrology and Hypertension, 27(6), 463-471. doi:10.1097/mnh.0000000000000455
    Nicholas, S. B., Kalantar-Zadeh, K., & Norris, K. C. (2015). Socioeconomic Disparities in Chronic Kidney Disease. Advances in Chronic Kidney Disease, 22(1), 6-15. doi:10.1053/j.ackd.2014.07.002
    Ozener, C., Arikan, H., Karayaylali, I., Utas, C., Bozfakioglu, S., Akpolat, T., . . . Yilmaz, M. E. (2014). The impact of diabetes mellitus on peritoneal dialysis: the turkey multicenter clinic study. Renal Failure, 36(2), 149-153. doi:10.3109/0886022X.2013.843275
    Padilla, C. M., Raffray, M., Pladys, A., Vigneau, C., & Bayat, S. (2018). Geographic variations in the risk of emergency first dialysis for patients with end stage renal disease in the bretagne region, france. International Journal of Environmental Research and Public Health, 16(1). doi:10.3390/ijerph16010018
    Para, I., Ciumarnean, L., Alexescu, T., Domsa, E. M., Milaciu, M. V., & Albu, A. (2019). Renal damage induced by non-steroidal anti-inflammatory drug treatment. Balneo Research Journal, 10(1), 3-7. doi:10.12680/balneo.2019.230
    Raffray, M., Bayat, S., Campéon, A., Laude, L., & Vigneau, C. (2019). The pre-dialysis care trajectory of chronic kidney disease patients and the start of dialysis in emergency: a mixed method study protocol. International Journal of Environmental Research and Public Health, 16(24), 5010. doi: 10.3390/ijerph16245010
    Robinson, R., Tait, C. D., Somov, P., Lau, M. W., Sangar, V. K., Ramani, V. A., & Clarke, N. W. (2016). Estimated glomerular filtration rate is unreliable in detecting renal function loss during follow-up after cystectomy and urinary diversion. International Urology and Nephrology, 48(4), 511-515. doi:10.1007/s11255-016-1216-0
    Saran, R., Li, Y., Robinson, B., Ayanian, J., Balkrishnan, R., Bragg-Gresham, J., . . . Abbott, K. C. (2015). US renal data system 2014 annual data report: epidemiology of kidney disease in the united states. American Journal of Kidney Diseases, 66(1 Suppl 1), Svii, S1-305. doi:10.1053/j.ajkd.2015.05.001
    Seligman, H. K., Laraia, B. A., & Kushel, M. B. (2010). Food insecurity is associated with chronic disease among low-income NHANES participants. Journal of Nutrition, 140(2), 304-310. doi:10.3945/jn.109.112573
    Shen, J. I., Schreiber, M. J., Zhao, J., Robinson, B. M., Pisoni, R. L., Mehrotra, R., . . . Perl, J. (2019). Attitudes toward peritoneal dialysis among peritoneal dialysis and hemodialysis medical directors: are we preaching to the right choir? Clinical Journal of the American Society of Nephrology, 14(7), 1067-1070. doi:10.2215/cjn.01320119
    Shestakova, M. V., & Kutyrina, I. M. (2002). Angiotensin converting enzyme inhibitors in renal diseases. Kardiologiya, 42(9), 74-79. doi: 10.2165/00003495-199000392-00006
    Shih, C. C., Lu, C. J., Chen, G. D., & Chang, C. C. (2020). Risk prediction for early chronic kidney disease: results from an adult health examination program of 19,270 individuals. International Journal of Environmental Research and Public Health, 17(14), 11. doi:10.3390/ijerph17144973
    Sinnakirouchenan, R., & Holley, J. L. (2011). Peritoneal dialysis versus hemodialysis: risks, benefits, and access issues. Advances in Chronic Kidney Disease, 18(6), 428-432. doi:10.1053/j.ackd.2011.09.001
    Spandana, A., & Swapna, T. S. (2020). A case report on non steroidal anti inflammatory drug induced nephropathy. International Journal of Life Science and Pharma Research, 435-439.
    Stankovic-Popovic, V., Nesic, V., Popovic, D., Maksic, D., Colic, M., Vasilijic, S., . . . Dimkovic, N. (2011). Effects of conventional versus biocompatible peritoneal dialysis solutions on peritoneal and systemic inflammation, malnutrition and atherosclerosis in CAPD patients. Clinical Nephrology, 76(4), 314-322. doi:10.5414/cn106991
    Syed-Ahmed, M., & Narayanan, M. (2019). Immune dysfunction and risk of infection in chronic kidney disease. Advances in Chronic Kidney Disease, 26(1), 8-15. doi:10.1053/j.ackd.2019.01.004
    Tangri, N., Ferguson, T., & Komenda, P. (2017). Pro: risk scores for chronic kidney disease progression are robust, powerful and ready for implementation. Nephrology Dialysis Transplantation, 32(5), 748-751. doi:10.1093/ndt/gfx067
    Tangri, N., Inker, L. A., Hiebert, B., Wong, J., Naimark, D., Kent, D., & Levey, A. S. (2017). A dynamic predictive model for progression of ckd. American Journal of Kidney Diseases, 69(4), 514-520. doi:10.1053/j.ajkd.2016.07.030
    Tangri, N., Stevens, L. A., Griffith, J., Tighiouart, H., Djurdjev, O., Naimark, D., . . . Levey, A. S. (2011). A predictive model for progression of chronic kidney disease to kidney failure. JAMA, 305(15), 1553-1559. doi:10.1001/jama.2011.451
    Tangri, N., Stevens, L. A., Griffith, J., Tighiouart, H., Djurdjev, O., Naimark, D., . . . Levey, A. S. (2011). A predictive model for progression of chronic kidney disease to kidney failure. Jama-Journal of the American Medical Association, 305(15), 1553-1559. doi:10.1001/jama.2011.451
    Tao, S. B., Zeng, X. X., Liu, J., & Fu, P. (2019). Socioeconomic status and mortality among dialysis patients: a systematic review and meta-analysis. International Urology and Nephrology, 51(3), 509-518. doi:10.1007/s11255-019-02078-5
    Tonelli, M., & Riella, M. (2014). Chronic kidney disease and the ageing population. Nephron Clinical Practice, 128(3-4), 319-322. doi:10.1159/000362458
    Vart, P., Gansevoort, R. T., Crews, D. C., Reijneveld, S. A., & Bultmann, U. (2015). Mediators of the association between low socioeconomic status and chronic kidney disease in the united states. American Journal of Epidemiology, 181(6), 385-396. doi:10.1093/aje/kwu316
    Velloso, M. S. S., Otoni, A., Sabino, A. D., de Castro, W. V., Pinto, S. W. L., Marinho, M. A. S., & Rios, D. R. A. (2014). Peritoneal dialysis and inflammation. Clinica Chimica Acta, 430, 109-114. doi:10.1016/j.cca.2013.12.003
    Vervloet, M. G., & van Ballegooijen, A. J. (2018). Prevention and treatment of hyperphosphatemia in chronic kidney disease. Kidney International, 93(5), 1060-1072. doi:10.1016/j.kint.2017.11.036
    Vinson, A. J., Bartolacci, J., Goldstein, J., Swain, J., Clark, D., & Tennankore, K. K. (2020). Predictors of need for first and recurrent emergency medical service transport to emergency department after dialysis initiation. Prehospital Emergency Care, 24(6), 822-830. doi:10.1080/10903127.2019.1701157
    Vupputuri, S., Kimes, T. M., Calloway, M. O., Christian, J. B., Bruhn, D., Martin, A. A., & Nichols, G. A. (2014). The economic burden of progressive chronic kidney disease among patients with type 2 diabetes. Journal of Diabetes and Its Complications, 28(1), 10-16. doi:10.1016/j.jdiacomp.2013.09.014
    Woods, J. D., Port, F. K., Stannard, D., Blagg, C. R., & Held, P. J. (1996). Comparison of mortality with home hemodialysis and center hemodialysis: a national study. Kidney International, 49(5), 1464-1470. doi:10.1038/ki.1996.206
    Wu, W.-C., Hsieh, P.-C., Hu, F.-K., Kuan, J.-C., Chu, C.-M., Sun, C.-A., . . . Chou, Y.-C. (2018). Long-term predictive models of risk factors for early chronic kidney disease: a longitudinal study. Oncotarget, 9(28). doi: 10.18632/oncotarget.24820
    Xu, R., Han, Q. F., Zhu, T. Y., Ren, Y. P., Chen, J. H., Zhao, H. P., . . . Wang, H. Y. (2012). Impact of individual and environmental socioeconomic status on peritoneal dialysis outcomes: a retrospective multicenter cohort study. Plos One, 7(11), 8. doi:10.1371/journal.pone.0050766
    Yeates, K. (2010). Health disparities in renal disease in canada. Seminars in Nephrology, 30(1), 12-18. doi:10.1016/j.semnephrol.2009.10.014
    Zeng, X., Liu, J., Tao, S., Hong, H. G., Li, Y., & Fu, P. (2018). Associations between socioeconomic status and chronic kidney disease: a meta-analysis. Journal of Epidemiology and Community Health, 72(4), 270-279. doi:10.1136/jech-2017-209815
    Zheng, C. M., Wang, J. Y., Chen, T. T., Wu, Y. C., Wu, Y. L., Lin, H. T., . . . Lin, Y. F. (2020). Angiotensin-converting enzyme inhibitors or angiotensin receptor blocker monotherapy retard deterioration of renal function in Taiwanese chronic kidney disease population (vol 15, pg 531, 2019). Scientific Reports, 10(1). doi:ARTN 663110.1038/s41598-020-63162-w
    謝瓊香、黃美莉(2010)。慢性腎病患者健康行爲之初探。榮總護理27卷2期。P136 – 146。doi:10.6142/VGHN.27.2.136
    衛生福利部中央健康保險署(2021)。全民健保末期腎臟病前期病人之照護與衛教計畫。取自https://reurl.cc/RXb99x。
    衛生福利部中央健康保險署(2022)。臺灣透析相關數據。取自https://reurl.cc/xQEK7z。
    江長城、賴彬卿(2019)。洗腎王國的另一個選擇~腎臟移植。取自https://www.cmuh.cmu.edu.tw/NewsInfo/NewsArticle?no=4578。

    下載圖示 校內:2023-08-27公開
    校外:2023-08-27公開
    QR CODE