| 研究生: |
李唯箏 Li, Wei-Zheng |
|---|---|
| 論文名稱: |
流體化床結晶技術副產物在弱酸系統以可見光芬頓法降解和礦化RB5的應用 Application of fluidized-bed crystallization by-product for degradation and mineralization of RB5 by visible-light assisted Fenton process in mild acidic system |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 可見光芬頓法 、鐵銅雙金屬催化劑 、AOPs 、LMCT 、RB5 |
| 外文關鍵詞: | AOPs, Visible light, RB5, LMCT, iron copper bimetallic catalyst |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Kang, S.-F., C.-H. Liao, and H.-P. Hung, Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. Journal of Hazardous materials, 1999. 65(3): p. 317-333.
2. Malato-Rodríguez, S., Solar detoxification and disinfection. 2004.
3. Lucas, M.S. and J.A. Peres, Degradation of Reactive Black 5 by Fenton/UV-C and ferrioxalate/H2O2/solar light processes. Dyes and pigments, 2007. 74(3): p. 622-629.
4. Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762-787.
5. Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., ... & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160.
6. Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for advanced oxidation processes. Journal of environmental management, 195, 93-99.
7. Babuponnusami, A. and K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2014. 2(1): p. 557-572.
8. Fenton, H.J.H., LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 1894. 65: p. 899-910.
9. Haber, F. and J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1934. 147(861): p. 332-351.
10. Weiss, J., Reaction mechanism of the enzymes catalase and peroxidase in the light of the theory of chain reactions. Journal of Physical Chemistry, 1937. 41(8): p. 1107-1116.
11. Wang, J. and J. Tang, Fe-based Fenton-like catalysts for water treatment: preparation, characterization and modification. Chemosphere, 2021. 276: p. 130177.
12. Chen, B., Xu, J., Dai, G., Sun, X., Situ, Y., & Huang, H. (2022). Accelerated Fe (III)/Fe (II) cycle couples with in-situ generated H2O2 boosting visible light-induced Fenton-like oxidation. Separation and Purification Technology, 299, 121688.
13. Wang, J. and J. Tang, Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. Journal of Molecular Liquids, 2021. 332: p. 115755.
14. Munoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2015). Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation–a review. Applied Catalysis B: Environmental, 176, 249-265.
15. Li, H., Liu, F., Zhang, H., & Huang, Y. H. (2018). Mineralization of n‐methyl‐2‐pyrrolidone by UV‐assisted advanced fenton process in a three‐phase fluidized bed reactor. CLEAN–Soil, Air, Water, 46(10), 1800307.
16. Zubir, N. A., Yacou, C., Motuzas, J., Zhang, X., Zhao, X. S., & da Costa, J. C. D. (2015). The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe3 O 4. Chemical Communications, 51(45), 9291-9293.
17. Shemer, H., Y.K. Kunukcu, and K.G. Linden, Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere, 2006. 63(2): p. 269-276.
18. Zhou, T., Lim, T. T., Li, Y., Lu, X., & Wong, F. S. (2010). The role and fate of EDTA in ultrasound-enhanced zero-valent iron/air system. Chemosphere, 78(5), 576-582.
19. Percuoco, R., Plain radiographic imaging, in Clinical Imaging. 2014, Elsevier. p. 1-43.
20. Ball, D.W., The electromagnetic spectrum: a history. Spectroscopy, 2007. 22(3): p. 14.
21. Zwinkels, J., Light, electromagnetic spectrum. Encyclopedia of Color Science and Technology, 2015. 8071: p. 1-8.
22. Schwalm, R., CHAPTER 2-The UV curing process. UV Coatings, Elsevier, Amsterdam, 2007: p. 19-61.
23. Lucas, M.S. and J.A. Peres, Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 2006. 71(3): p. 236-244.
24. Faust, B.C. and J. Hoigné, Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmospheric Environment. Part A. General Topics, 1990. 24(1): p. 79-89.
25. Knight, R. and R. Sylva, Spectrophotometric investigation of iron (III) hydrolysis in light and heavy water at 25 C. Journal of Inorganic and Nuclear Chemistry, 1975. 37(3): p. 779-783.
26. Pignatello, J.J., E. Oliveros, and A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical reviews in environmental science and technology, 2006. 36(1): p. 1-84.
27. Dalrymple, R.M., A.K. Carfagno, and C.M. Sharpless, Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environmental science & technology, 2010. 44(15): p. 5824-5829.
28. Hislop, K.A. and J.R. Bolton, The Photochemical generation of hydroxyl radicals in the UV− vis/Ferrioxalate/H2O2 System. Environmental science & technology, 1999. 33(18): p. 3119-3126.
29. Wriedt, B. and D. Ziegenbalg, Application limits of the ferrioxalate actinometer. ChemPhotoChem, 2021. 5(10): p. 947-956.
30. Weller, C., S. Horn, and H. Herrmann, Effects of Fe (III)-concentration, speciation, excitation-wavelength and light intensity on the quantum yield of iron (III)-oxalato complex photolysis. Journal of Photochemistry and Photobiology A: Chemistry, 2013. 255: p. 41-49.
31. Balmer, M.E. and B. Sulzberger, Atrazine degradation in irradiated iron/oxalate systems: effects of pH and oxalate. Environmental Science & Technology, 1999. 33(14): p. 2418-2424.
32. Jeong, J. and J. Yoon, Dual roles of CO2− for degrading synthetic organic chemicals in the photo/ferrioxalate system. Water research, 2004. 38(16): p. 3531-3540.
33. Rush, J.D. and B.H. Bielski, Pulse radiolytic studies of the reactions of HO2/O2 with Fe (II)/Fe (III) ions. The reactivity of HO2/O2 with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. J. Phys. Chem.;(United States), 1985. 89(23).
34. Jeong, J. and J. Yoon, pH effect on OH radical production in photo/ferrioxalate system. Water Research, 2005. 39(13): p. 2893-2900.
35. De Luca, A., R.F. Dantas, and S. Esplugas, Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Research, 2014. 61: p. 232-242.
36. Silva, M., A. Trovó, and R. Nogueira, Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH. Journal of Photochemistry and Photobiology A: Chemistry, 2007. 191(2-3): p. 187-192.
37. Huang, W., Brigante, M., Wu, F., Mousty, C., Hanna, K., & Mailhot, G. (2013). Assessment of the Fe (III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. Environmental science & technology, 47(4), 1952-1959.
38. Ahile, U. J., Wuana, R. A., Itodo, A. U., Sha'Ato, R., & Dantas, R. F. (2020). A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies. Science of the total environment, 710, 134872.
39. Gárcia-Fernández, I., Polo-López, M. I., Oller, I., & Fernandez-Ibanez, P. (2012). Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study. Applied Catalysis B: Environmental, 121, 20-29.
40. Doumic, L. I., Soares, P. A., Ayude, M. A., Cassanello, M., Boaventura, R. A., & Vilar, V. J. (2015). Enhancement of a solar photo-Fenton reaction by using ferrioxalate complexes for the treatment of a synthetic cotton-textile dyeing wastewater. Chemical Engineering Journal, 277, 86-96.
41. Prato-Garcia, D., R. Vasquez-Medrano, and M. Hernandez-Esparza, Solar photoassisted advanced oxidation of synthetic phenolic wastewaters using ferrioxalate complexes. Solar Energy, 2009. 83(3): p. 306-315.
42. Monteagudo, J. M., Durán, A., Corral, J. M., Carnicer, A., Frades, J. M., & Alonso, M. A. (2012). Ferrioxalate-induced solar photo-Fenton system for the treatment of winery wastewaters. Chemical Engineering Journal, 181, 281-288.
43. Manenti, D. R., Soares, P. A., Modenes, A. N., Espinoza-Quinones, F. R., Boaventura, R. A., Bergamasco, R., & Vilar, V. J. (2015). Insights into solar photo-Fenton process using iron (III)–organic ligand complexes applied to real textile wastewater treatment. Chemical Engineering Journal, 266, 203-212.
44. Cabrera-Reina, A., Miralles-Cuevas, S., Pérez, J. S., & Salazar, R. (2021). Application of solar photo-Fenton in raceway pond reactors: A review. Science of The Total Environment, 800, 149653.
45. Seraghni, N., Dekkiche, B. A., Debbache, N., Belattar, S., Mameri, Y., Belaidi, S., & Sehili, T. (2021). Photodegradation of cresol red by a non-iron Fenton process under UV and sunlight irradiation: effect of the copper (II)-organic acid complex activated by H2O2. Journal of Photochemistry and Photobiology A: Chemistry, 420, 113485.
46. Bokare, A.D. and W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of hazardous materials, 2014. 275: p. 121-135.
47. Mammeria, L., Remachea, W., Belaidia, S., Benssassia, M. E., Tasbihic, M., Sehilia, T., & Djebbara, K. Activation of oxygen by copper coupled with ascorbic acid under solar and artificiallightforOrangeGoxidation.
48. Gabriel, J., Baldrian, P., Verma, P., Cajthaml, T., Merhautová, V., Eichlerová, I., ... & Nerud, F. (2004). Degradation of BTEX and PAHs by Co (II) and Cu (II)-based radical-generating systems. Applied Catalysis B: Environmental, 51(3), 159-164.
49. Primo, O., M.J. Rivero, and I. Ortiz, Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of hazardous materials, 2008. 153(1-2): p. 834-842.
50. Nieto-Juarez, J. I., Pierzchła, K., Sienkiewicz, A., & Kohn, T. (2010). Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight. Environmental science & technology, 44(9), 3351-3356.
51. Millero, F. J., Johnson, R. L., Vega, C. A., Sharma, V. K., & Sotolongo, S. (1992). Effect of ionic interactions on the rates of reduction of Cu (II) with H 2 O 2 in aqueous solutions. Journal of solution chemistry, 21, 1271-1287.
52. Sirés, I., Garrido, J. A., Rodríguez, R. M., Centellas, F., Arias, C., & Brillas, E. (2005). Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and UVA light on electrogenerated hydrogen peroxide. Journal of the Electrochemical Society, 153(1), D1.
53. Watts, R. J., Sarasa, J., Loge, F. J., & Teel, A. L. (2005). Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions. Journal of environmental engineering, 131(1), 158-164.
54. Ling, S.K., S. Wang, and Y. Peng, Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. Journal of Hazardous Materials, 2010. 178(1-3): p. 385-389.
55. Levina, A. and P.A. Lay, Mechanistic studies of relevance to the biological activities of chromium. Coordination Chemistry Reviews, 2005. 249(3-4): p. 281-298.
56. Bokare, A.D. and W. Choi, Advanced oxidation process based on the Cr (III)/Cr (VI) redox cycle. Environmental science & technology, 2011. 45(21): p. 9332-9338.
57. Barndõk, H., Blanco, L., Hermosilla, D., & Blanco, Á. (2016). Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1, 4-dioxane. Chemical Engineering Journal, 284, 112-121.
58. Xiao, C., J. Li, and G. Zhang, Synthesis of stable burger-like α-Fe2O3 catalysts: formation mechanism and excellent photo-Fenton catalytic performance. Journal of cleaner production, 2018. 180: p. 550-559.
59. Li, X., Huang, Y., Li, C., Shen, J., & Deng, Y. (2015). Degradation of pCNB by Fenton like process using α-FeOOH. Chemical Engineering Journal, 260, 28-36.
60. Muthuvel, I. and M. Swaminathan, Highly solar active Fe (III) immobilised alumina for the degradation of Acid Violet 7. Solar energy materials and solar cells, 2008. 92(8): p. 857-863.
61. Hsueh, C. L., Huang, Y. H., Wang, C. C., & Chen, C. Y. (2006). Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH. Journal of Molecular Catalysis A: Chemical, 245(1-2), 78-86.
62. Shukla, P., Wang, S., Sun, H., Ang, H. M., & Tadé, M. (2010). Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chemical Engineering Journal, 164(1), 255-260.
63. Djeffal, L., Abderrahmane, S., Benzina, M., Fourmentin, M., Siffert, S., & Fourmentin, S. (2014). Efficient degradation of phenol using natural clay as heterogeneous Fenton-like catalyst. Environmental Science and Pollution Research, 21, 3331-3338.
64. Sun, Y., Yang, Z., Tian, P., Sheng, Y., Xu, J., & Han, Y. F. (2019). Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts. Applied Catalysis B: Environmental, 244, 1-10.
65. Wang, J., Liu, C., Hussain, I., Li, C., Li, J., Sun, X., ... & Wang, L. (2016). Iron–copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: the effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye. RSC advances, 6(59), 54623-54635.
66. Luo, L., Dai, C., Zhang, A., Wang, J., Liu, M., Song, C., & Guo, X. (2015). A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation. Catalysis Science & Technology, 5(6), 3159-3165.
67. Wang, J., Liu, C., Li, J., Luo, R., Hu, X., Sun, X., ... & Wang, L. (2017). In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst. Applied Catalysis B: Environmental, 207, 316-325.
68. Xia, Q., Zhang, D., Yao, Z., & Jiang, Z. (2022). Revealing the enhancing mechanisms of Fe–Cu bimetallic catalysts for the Fenton-like degradation of phenol. Chemosphere, 289, 133195.
69. Aldaco, R., A. Garea, and A. Irabien, Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand. Industrial & engineering chemistry research, 2006. 45(2): p. 796-802.
70. Aldaco, R., A. Garea, and A. Irabien, Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor. Water Research, 2007. 41(4): p. 810-818.
71. Van den Broeck, K., Van Hoornick, N., Van Hoeymissen, J., de Boer, R., Giesen, A., & Wilms, D. (2003). Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor. IEEE transactions on semiconductor manufacturing, 16(3), 423-428.
72. Chen, C.-S., Y.-J. Shih, and Y.-H. Huang, Remediation of lead (Pb (II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system. Chemical Engineering Journal, 2015. 279: p. 120-128.
73. Guillard, D. and A.E. Lewis, Nickel carbonate precipitation in a fluidized-bed reactor. Industrial & engineering chemistry research, 2001. 40(23): p. 5564-5569.
74. Pratiwi, J., Lin, J. Y., Mahasti, N. N., Shih, Y. J., & Huang, Y. H. (2021). Fluidized-bed synthesis of iron-copper bimetallic catalyst (FeIIICuI@ SiO2) for mineralization of benzoic acid in blue light-assisted Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 119, 60-69.
75. Mahasti, N.N., Y.-J. Shih, and Y.-H. Huang, Recovery of magnetite from fluidized-bed homogeneous crystallization of iron-containing solution as photocatalyst for Fenton-like degradation of RB5 azo dye under UVA irradiation. Separation and Purification Technology, 2020. 247: p. 116975.
76. Selvaraj, V., Karthika, T. S., Mansiya, C., & Alagar, M. (2021). An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of molecular structure, 1224, 129195.
77. Aljamali, N.M., Review in azo compounds and its biological activity. Biochem Anal Biochem, 2015. 4(2): p. 1-4.
78. Chung, K.-T., Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 2016. 34(4): p. 233-261.
79. Katheresan, V., J. Kansedo, and S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review. Journal of environmental chemical engineering, 2018. 6(4): p. 4676-4697.
80. Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M. H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process safety and environmental protection, 143, 138-163.
81. Kodasma, R., Palas, B., Ersöz, G., & Atalay, S. (2020). Photocatalytic activity of copper ferrite graphene oxide particles for an efficient catalytic degradation of Reactive Black 5 in water. Ceramics International, 46(5), 6284-6292.
82. Mohsin, M., Bhatti, I. A., Ashar, A., Mahmood, A., ul Hassan, Q., & Iqbal, M. (2020). Fe/ZnO@ ceramic fabrication for the enhanced photocatalytic performance under solar light irradiation for dye degradation. Journal of Materials Research and Technology, 9(3), 4218-4229.
83. Wang, Z., Ma, W., Chen, C., Ji, H., & Zhao, J. (2011). Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review. Chemical Engineering Journal, 170(2-3), 353-362.
84. 白格, 陈茂清, 蔡楠, 郭子维, 张婷, & 郭鹏然. (2021). 高级氧化技术中自由基的检测技术和方法研究进展. Journal of Instrumental Analysis, 40(7), 1109-1118.
85. Villamena, F.A., C.M. Hadad, and J.L. Zweier, Kinetic study and theoretical analysis of hydroxyl radical trapping and spin adduct decay of alkoxycarbonyl and dialkoxyphosphoryl nitrones in aqueous media. The journal of physical chemistry A, 2003. 107(22): p. 4407-4414.
86. Fagan, W. P., Villamena, F. A., Zweier, J. L., & Weavers, L. K. (2022). In situ EPR spin trapping and competition kinetics demonstrate temperature-dependent mechanisms of synergistic radical production by ultrasonically activated persulfate. Environmental Science & Technology, 56(6), 3729-3738.
87. Wang, Q., Wang, B., Ma, Y., & Xing, S. (2018). Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide. Chemical Engineering Journal, 354, 473-480.
88. Du, X., Wang, Y., Su, X., & Li, J. (2009). Influences of pH value on the microstructure and phase transformation of aluminum hydroxide. Powder Technology, 192(1), 40-46.
89. Gao, Q., Chen, F., Zhang, J., Hong, G., Ni, J., Wei, X., & Wang, D. (2009). The study of novel Fe3O4@ γ-Fe2O3 core/shell nanomaterials with improved properties. Journal of magnetism and magnetic materials, 321(8), 1052-1057.
90. Lakhera, S. K., Watts, A., Hafeez, H. Y., & Neppolian, B. (2018). Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic activity. Catalysis Today, 300, 58-70.
91. Mohanraj, K. and G. Sivakumar, Synthesis of γ-Fe2O3, Fe3O4 and copper doped Fe3O4 nanoparticles by sonochemical method. Sains Malaysiana, 2017. 46(10): p. 1935-1942.
92. Zhang, X., Niu, Y., Meng, X., Li, Y., & Zhao, J. (2013). Structural evolution and characteristics of the phase transformations between α-Fe 2 O 3, Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm, 15(40), 8166-8172.
93. Ristić, M., S. Musić, and M. Godec, Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions. Journal of Alloys and Compounds, 2006. 417(1-2): p. 292-299.
94. Mei, L., Liao, L., Wang, Z., & Xu, C. (2015). Interactions between phosphoric/tannic acid and different forms of FeOOH. Advances in Materials Science and Engineering, 2015.
95. Van Tran, T., Nguyen, D. T. C., Nguyen, T. T., Le, H. T., Van Nguyen, C., & Nguyen, T. D. (2020). Metal-organic framework HKUST-1-based Cu/Cu2O/CuO@ C porous composite: Rapid synthesis and uptake application in antibiotics remediation. Journal of Water Process Engineering, 36, 101319.
96. Vasquez, R., Cu2O by XPS. Surface Science Spectra, 1998. 5(4): p. 257-261.
97. Xiao, C., et al., Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin–FeOOH system for the degradation of organic dyes. RSC advances, 2020. 10(32): p. 18704-18714.
98. Barreca, D., A. Gasparotto, and E. Tondello, CVD Cu2O and CuO nanosystems characterized by XPS. Surface Science Spectra, 2007. 14(1): p. 41-51.
99. Abdel-Samad, H. and P.R. Watson, An XPS study of the adsorption of chromate on goethite (α-FeOOH). Applied Surface Science, 1997. 108(3): p. 371-377.
100. Flores, Y., R. Flores, and A.A. Gallegos, Heterogeneous catalysis in the Fenton-type system reactive black 5/H2O2. Journal of Molecular Catalysis A: Chemical, 2008. 281(1-2): p. 184-191.
101. Sahel, K., Perol, N., Chermette, H., Bordes, C., Derriche, Z., & Guillard, C. (2007). Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B—Isotherm of adsorption, kinetic of decolorization and mineralization. Applied Catalysis B: Environmental, 77(1-2), 100-109.
102. Barreiro, J. C., Capelato, M. D., Martin-Neto, L., & Hansen, H. C. B. (2007). Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system. Water Research, 41(1), 55-62.
103. Christodoulou, E., D. Panias, and I. Paspaliaris, Calculated Solubility of Trivalent Iron and Aluminum in Oxalic Acid Solutions At 25° C. Canadian metallurgical quarterly, 2001. 40(4): p. 421-432.
104. Soare, L. C., Lemaître, J., Bowen, P., & Hofmann, H. (2006). A thermodynamic model for the precipitation of nanostructured copper oxalates. Journal of crystal growth, 289(1), 278-285.
105. FAN, Y. Q., ZHANG, C. F., Jing, Z. H. A. N., & WU, J. H. (2008). Thermodynamic equilibrium calculation on preparation of copper oxalate precursor powder. Transactions of Nonferrous Metals Society of China, 18(2), 454-458.
106. Zhao, Z., Cai, X., Fan, S., Zhang, Y., Huang, Z., Hu, H., ... & Qin, Y. (2021). Construction of a stable Cu-Fe@ C composite catalyst with enhanced performance and recyclability for visible-light-driven photo-Fenton reaction. Journal of Alloys and Compounds, 877, 160260.
107. Anipsitakis, G.P. and D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants. Environmental science & technology, 2004. 38(13): p. 3705-3712.
108. Fónagy, O., E. Szabo-Bardos, and O. Horváth, 1, 4-Benzoquinone and 1, 4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 2021. 407: p. 113057.
109. Appiani, E., Ossola, R., Latch, D. E., Erickson, P. R., & McNeill, K. (2017). Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content. Environmental Science: Processes & Impacts, 19(4), 507-516.
110. Zhu, C., Zhu, F., Dionysiou, D. D., Zhou, D., Fang, G., & Gao, J. (2018). Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process. Water research, 139, 66-73.
111. Li, H., Cheng, R., Liu, Z., & Du, C. (2019). Waste control by waste: Fenton–like oxidation of phenol over Cu modified ZSM–5 from coal gangue. Science of the Total Environment, 683, 638-647.
112. Liu, C., Dai, H., Tan, C., Pan, Q., Hu, F., & Peng, X. (2022). Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Applied Catalysis B: Environmental, 310, 121326.
113. Zhu, S., Li, X., Kang, J., Duan, X., & Wang, S. (2018). Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environmental science & technology, 53(1), 307-315.
114. Yi, Q., Li, Y., Dai, R., Li, X., Li, Z., & Wang, Z. (2022). Efficient removal of neonicotinoid by singlet oxygen dominated MoSx/ceramic membrane-integrated Fenton-like process. Journal of Hazardous Materials, 439, 129672.
115. Vyas, J., M. Mishra, and V. Gandhi. Photocatalytic degradation of alizarin cyanine green G, reactive red 195 and reactive black 5 using UV/TiO2 process. in Materials Science Forum. 2013. Trans Tech Publ.
校內:2026-08-15公開