| 研究生: |
吳俊霖 Wu, Jun-Lin |
|---|---|
| 論文名稱: |
長短期移動平均差距對股價報酬的預測性—以臺灣市場為例 Does Moving Average Distance Predict Stock Returns? Evidence from Taiwan Market |
| 指導教授: |
黃炳勳
Huang, Ping-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 27 |
| 中文關鍵詞: | 短期移動平均 、長期移動平均 、技術分析 |
| 外文關鍵詞: | short-term moving average, long-term moving average, technical rules |
| 相關次數: | 點閱:101 下載:39 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究旨在檢驗短期與長期移動平均(Moving average)的差距,是否能在臺灣股市做為股價報酬的預測指標。結果顯示,在其它常見市場異常現象的控制下,20天期MA與250天期MA所組合的比率,對於未來2到6個月及7到12個月的報酬具備顯著的預測能力。此外,移動平均差距(MAD)效果在不同的市場特性下也得以被觀察到,例如:流動性高低以及市場波動性高低。在之後的投資組合分析中,我以MAD分位數做為分組的依據,也透過其它市場異常現象(例如:動量因子、趨勢因子及52週高點)的分位數進行二次分組。結果顯示,高MAD特性的投資組合在未來2到6個月之中,可獲得較高且顯著的報酬。另外,本篇研究發現在三因子及五因子Fama-French模型的控制下,高MAD特性的個股可賺取顯著的超額報酬。
This article examines whether the distance between short-term and long-term moving average (MA) serves as a reliable predictor of equity returns in Taiwan market. My results reveal that 20-day-MA to 250-day-MA ratio has a significant predictability of returns in the future 2 to 6 months and 7 to 12 months when other common market anomalies are taken into account. The MAD effect also survives in different market conditions, such as high-versus-low market liquidity and volatility. Performing portfolio analysis, I further sort portfolios based on MAD deciles and other deciles related to market anomalies (e.g., momentum, trend and 52-week-high). My results show that high-MAD portfolios produce significantly higher expected returns in the future 2 to 6 months. Moreover, I find that high-MAD stocks create significant annual alpha while both three and five factors of Fama-French Model are considered.
Alexander, S., 1961, Price movements in speculative markets: Trends or random walks, Industrial Management Review 2, pp.7-26.
Amihud, Y., 2002, Illiquidity and stock returns: Cross-section and time-series effects, Journal of Financial Markets 5, pp.31-56.
Appel, G., 2005, Technical analysis: Power tools for active investors. New York, NY: FT Press.
Avramov, D., T. Chordia, G. Jostova, and A. Philipov, 2013, Anomalies and financial distress, Journal of Financial Economics 108, pp.139-159.
Avramov, D., S. Cheng, and A. Hameed, 2016, Time-varying liquidity and momentum profits, Journal of Financial and Quantitative Analysis 51, pp.1897-1923.
Avramov, D., G. Kaplanski, and A. Subrahmanyam, 2018, Moving Average Distance as a Predictor of Equity Returns, Review of Financial Economics
Ball, R., and P. Brown, 1968, An empirical evaluation of accounting income numbers, Journal of Accounting Research 6, pp.159-178.
Banz, R., 1981, The relationship between return and market value of common stocks, Journal of Financial Economics 9, pp.3-18.
Brock, W., J. Lakonishok, and B. LeBaron, 1992, Simple technical trading rules and the stochastic properties of stock returns, Journal of Finance 47, pp.1731-1764.
Campbell, J., J. Hilscher, and J. Szilagyi, 2008, In search of distress risk, Journal of Finance 63, pp.2899-2939.
Chan, L., N. Jegadeesh, and J. Lakonishok, 1999, The profitability of momentum strategies, Financial Analysts Journal 55, pp.80-90.
Chen, L., R. Novy-Marx, and L. Zhang, 2011, An alternative three-factor model, working paper,University of Rochester.
Chordia, T., A. Subrahmanyam, and Q. Tong, 2014, Have capital market anomalies attenuated in the recent era of high liquidity and trading activity?, Journal of Accounting and Economics 58, pp.41-58.
Cohen, R., P. Gompers, and T. Vuolteenaho, 2002, Who underreacts to cash-flow news? Evidence from trading between individuals and institutions, Journal of Financial Economics 66, pp.409-462.
Daniel, K., M. Grinblatt, S. Titman, and R. Wermers, 1997, Measuring mutual fund performance with characteristic‐based benchmarks, Journal of Finance 52, pp.1035-1058.
Datar, V., N. Naik, and R. Radcliffe, 1998, Liquidity and stock returns: An alternative test, Journal of Financial Markets 1, pp.203-219.
DeBondt, W., and R. Thaler, 1985, Does the stock market overreact?, Journal of Finance 40, pp.793-805..
Donaldson, R., and H. Kim, 1993, Price barriers in the Dow Jones Industrial Average, Journal of Financial and Quantitative Analysis 28, pp.313-330.
Fama, E., and J. MacBeth, 1973, Risk, return, and equilibrium: Empirical tests, Journal of Political Economy 81, pp.607-636.
Fama, E., and K. French, 1992, The cross section of expected stock returns, Journal of Finance 47, pp.427-466.
Fama, E., and K. French, 1993, Common risk factors in the returns of stocks and bonds, Journal of Financial Economics 33, pp.3-56.
Fama, E., and K. French, 2006, Profitability, investment and average returns, Journal of Financial Economics 82, pp.491-518.
Fama, E., and K. French, 2008, Dissecting anomalies, Journal of Finance 63, pp.1653-1678.
Fama, E., and K. French, 2015, A five-factor asset pricing model, Journal of Financial Economics 116, pp.1-22.
Fama, E., and K. French, 2016, Dissecting anomalies with a five-factor model, Review of Financial Studies 29, pp.69-103.
George, T., and C. Hwang, 2004, The 52‐week high and momentum investing, Journal of Finance 59, pp.2145-2176.
Han, Y., K. Yang, and G. Zhou, 2013, A new anomaly: The cross-sectional profitability of technical analysis, Journal of Financial and Quantitative Analysis 48, pp.1433-1461.
Han, Y., G. Zhou, and Y. Zhu, 2016, A trend factor: Any economic gains from using information over investment horizons?, Journal of Financial Economics 122, pp.352-375.
Haugen, R., and N. Baker, 1996, Commonality in the determinants of expected stock returns, Journal of Financial Economics 41, pp.401-439.
Hou, K., C. Xue, and L. Zhang, 2015, Digesting anomalies: An investment approach, Review of Financial Studies 28, pp.650-705.
Ikenberry, D., J. Lakonishok, and T. Vermaelen, 1995, Market underreaction to open market share repurchases, Journal of Financial Economics 39, pp.181-208.
Jegadeesh, N., 1990, Evidence of predictable behavior of security returns, Journal of Finance 45, pp.881-898.
Jegadeesh, N., and S. Titman, 1993, Returns to buying winners and selling losers: Implications for stock market efficiency, Journal of Finance 48, pp.65-91.
Li, J., and J. Yu, 2012, Investor attention, psychological anchors, and stock return predictability. Journal of Financial Economics 104, pp.401-419.
Novy-Marx, R., 2013, The other side of value: The gross profitability premium, Journal of Financial Economics 108, pp.1-28.
Novy-Marx, R., and M. Velikov, 2016, A taxonomy of anomalies and their trading costs, Review of Financial Studies 29, pp.104-147.
Ohlson, J., 1980, Financial ratios and the probabilistic prediction of bankruptcy, Journal of Accounting Research 18, pp.109-131.
Pontiff, J., and A. Woodgate, 2008, Share issuance and cross‐sectional returns, Journal of Finance 63, pp.921-945.
Reinganum, M., 1981, Misspecification of capital asset pricing: Empirical anomalies based on earnings’ yields and market values, Journal of Financial Economics 9, pp.19-46.
Stambaugh, R., J. Yu, and Y. Yuan, 2012, The short of it: Investor sentiment and anomalies, Journal of Financial Economics 104, pp.288-302.
Titman, S., J. Wei, and F. Xie, 2004, Capital investments and stock returns, Journal of Financial and Quantitative Analysis 39, pp.677-700.
Tversky, A., and D. Kahneman, 1974, Judgment under uncertainty: Heuristics and biases, Science 185, pp.1124-1131.
Van Horne, J., and G. Parker, 1967, The random-walk theory: an empirical test, Financial Analysts Journal 23, pp.87-92.
Wang, K., and J. Xu. 2015, Market volatility and momentum, Journal of Empirical Finance 30, pp.79-91.
Xing, Y., 2008, Interpreting the value effect through the Q-theory: An empirical investigation, Review of Financial Studies 21, pp.1767-1795.