簡易檢索 / 詳目顯示

研究生: 吳承珉
Wu, Cheng-Min
論文名稱: 以分層電化學製備CuInSe2應用於光感測器之研究
Study of CuInSe2 Fabricated by Layered Electrodeposition for Photodetector Applications
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 分層電化學沉積二硒化銅銦光感測器
外文關鍵詞: Electrodeposition, CuInSe2, photodetector
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用分層電化學方式沉積CuInSe2於Mo/玻璃基板上,透過調變電鍍參數控制CuInSe2之品質,將沉積完成之電鍍樣品透過RTA熱處理後提升CuInSe2之結晶性,並針對此流程製程之CuInSe2設計光感測器結構,量測光感測器之特性。
    本研究首先透過循環伏安法量測Cu、In、Se三元素之還原電位,並且移除硒化法,改善CuInSe2沉積狀況。接著改變原始配方之電鍍週期,原始配方之週期為沉積Cu、Se、In、Se,此循環重複兩次,更改之電鍍週期為沉積Cu、In、Se,此循環僅重複一次,改變電鍍週期後成功製程接近理想CuInSe2元素比例之樣品。最終透過調變Cu之沉積時間,精確的調變CuInSe2之Cu/In比例,成功製程p-type CuInSe2與n-type CuInSe2。
    研究推測具備蕭特基整流特性之CuInSe2相較於歐姆特性之CuInSe2更適合作為光感測器之吸收層,因此將所製程之p-type CuInSe2應用於MSM(metal-semiconductor-metal)結構之光感測器與p-n接面光感測器,MSM結構光感測器所量測之響應度(responsivity) R = 0.65 A/W,探測率(detectivity) D = 4.663 × 109 Jones,p-n接面光感測器之響應度R = 0.89 A/W,探測率D = 1.014 × 1010 Jones。

    In this study, CuInSe2 was fabricated by layered electrodeposition on Mo/glass substrates. The quality of CuInSe2 was controlled by adjusting the electroplating parameters. The deposited electroplating samples were subjected to RTA to improve the crystallinity of CuInSe2, and the photodetector structure was designed for CuInSe2 in this process to measure the characteristics of the photodetector.
    The research process is to measure the reduction potential of Cu, In, and Se by cyclic voltammetry, and remove the selenization method to improve the deposition of CuInSe2. Then change the electrodepositing cycle of the original formula. The cycle of the original formula is to deposit Cu, Se, In, Se, this cycle is repeated twice. The changed electrodepositing cycle is to deposit Cu, In, Se, this cycle is repeated only once. This process successfully processes samples with close to the ideal CuInSe2 element ratio. Finally, the Cu/In ratio of CuInSe2 can be precisely adjusted by adjusting the deposition time of Cu. This modulation successfully processes p-type CuInSe2 and n-type CuInSe2.
    The research speculates that CuInSe2 with rectification characteristics is more suitable as the absorption layer of the photodetector than CuInSe2 with ohmic contact. Therefore, p-type CuInSe2 is applied to the photodetector of metal-semiconductor-metal (MSM) and the photodetector of p-n junction. The responsivity of the MSM photodetector is 0.65 A/W, and the detectivity is 4.663 × 109 Jones. The responsivity of the p-n junction photodetector is 0.89 A/W, and the detectivity is 1.014 × 1010 Jones.

    摘要I SUMMARY III 致謝X 目錄XII 表目錄XV 圖目錄XVI 第一章 緒論1 1-1前言1 1-2 CuInSe2材料簡介2 1-3光感測器簡介4 1-4研究動機5 第二章 理論基礎7 2-1 CuInSe2材料7 2-1-1 CuInSe2特性介紹7 2-1-2 CuInSe2製備方式介紹9 2-1-3 CuInSe2化學組成比例13 2-2 AZOY材料15 2-2-1 AZOY特性介紹15 2-2-2 AZOY製備方式介紹17 2-3電化學沉積系統介紹20 2-3-1電化學沉積系統介紹20 2-3-2電化學沉積晶體之結晶成長過程23 2-3-3影響電化學沉積之主要參數25 2-3-4循環伏安法(Cyclic Voltammetry)27 2-4金屬-半導體接觸理論29 2-4-1金屬半導體接觸29 2-4-2蕭特基接觸30 2-4-3歐姆接觸32 2-5光感測器介紹34 2-5-1光感測器特性介紹34 2-5-2金屬-半導體-金屬結構光感測器(MSM photodetector)35 2-5-3 P-n 接面光感測器(P-n junction photodetector)37 第三章 實驗方法與儀器介紹38 3-1實驗方法38 3-1-1製備分層結構之CuInSe2實驗流程38 3-1-2實驗步驟介紹38 3-2實驗藥品介紹45 3-3實驗儀器介紹46 3-3-1恆電位儀系統46 3-3-2快速熱退火系統(Rapid Thermal Annealing,RTA)47 3-3-3磁控射頻濺鍍機(RF magnetron sputter)49 3-3-4場發射掃描式電子顯微鏡(Field Emission-Scanning Electron Microscope, FE-SEM)50 3-3-5能量分析光譜儀(Energy Dispersive Spectrometer ; EDS)52 3-3-6紫外光-可見光光譜儀(Ultraviolet Visible Spectrometer)53 3-3-7 X光繞射儀(X-Ray Diffractometer ; XRD)54 第四章 結果與討論56 4-1實驗架構56 4-2分層電化學沉積之CuInSe2製程參數56 4-2-1 CuInSe2熱處理參數調變57 4-2-2 CuInSe2還原電位調變60 4-2-3 CuInSe2電鍍週期調變64 4-2-4 CuInSe2電鍍時間調變66 4-3分層電化學沉積之CuInSe2特性分析69 4-3-1 XRD量測分析69 4-3-2 SEM&EDS量測分析71 4-3-2 UV量測分析73 4-4電性分析76 4-4-1不同Cu/In比例之CuInSe2電性分析76 4-4-2 MSM結構與p-n 接面結構光感測器之電性分析78 第五章 結論83 第六章 未來工作85 參考文獻86

    [1]Jackson, Philip, et al. "New world record efficiency for Cu (In, Ga) Se2 thin‐film solar cells beyond 20%." Progress in Photovoltaics: Research and Applications 19.7 (2011): 894-897.
    [2]T. Markvart and L. Castaner, “Solar cells: materials and manufacture and operation.” Oxford, Elsevier Advanced Technology, 2005.
    [3]M. Izzetoglu; S. C. Bunce; K. Izzetoglu; B. Onaral,and K. Pourrezaei, “Functional brain imaging using near-infrared technology”,IEEE Eng.Med. Biol. Mag.,(2007),p38-46.
    [4]J. Esper,P. Panetta,M. Ryschkewitsch,W. Wiscombe,and S. Neeck, “NASA-GSFC nano-satellite technology for Earth science missions”,Acta Astornautica,(2000),p287-296.
    [5]Jeffery L. Gray, et al. “NUMERICAL MODELING OF CuInSe2 AND CdTe SOLAR CELLS.” (1994).Jeffery L. Gray, et al. “NUMERICAL MODELING OF CuInSe2 AND CdTe SOLAR CELLS.” (1994).
    [6]施敏、李明逵 著, 曾俊元 譯 “半導體元件物理與製作技術”, 民 國 102 年, 國立交通大學出版社, 第三版
    [7]Guillén, C.,et al. "Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors." Solar energy materials and solar cells 73.2 (2002): 141-149.
    [8]Brian Pamplin, R. S. Feigelson, “Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds.” Thin Solid Films 60.2 (1979): 141-146.
    [9]Wei, Su-Huai, et al. “Defect properties of CuInSe2 and CuGaSe2.” Journal of Physics and Chemistry of solids 66.11 (2005): 1994-1999.
    [10] Green, M. A., & Emery, K. "Solar cell efficiency tables (version 36)." Progress in Photovoltaics: Research and Applications 18.5 (2010): 346-352.
    [11] Terasako, T., Inoue, S., Kariya, T., & Shirakata, S., "Three-stage growth of Cu–In–Se polycrystalline thin films by chemical spray pyrolysis." Solar energy materials and solar cells91.12 (2007): 1152-1159.
    [12] Zhang, S. B., et al. “Defect physics of the CuInSe2 chalcopyrite semiconductor.” Physical Review B 57.16 (1998): 9642.
    [13] Noufi, R., et al. “Electronic properties versus composition of thin films of CuInSe2.” Applied Physics Letters 45.6 (1984): 668-670.
    [14] B. J. Stanbery, “Copper Indium Selenides and Related Materials for Photovoltaic Devices,” Critical Reviews in Solid State and Materials 82 Sciences, 27.2 (2010): 73-117.
    [15] Fang-Hsing Wang, Jun-Dar Hwang, Ming-Che Chan, “Study of enhancing ultraviolet response in ZnO nanorods Schottky photodetector by metal surface plasmon.” 國立中興大學電機工程研究所.
    [16] PARK, Ki Cheol; MA, Dae Young; KIM, Kun Ho. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering. Thin solid films, 1997, 305.1-2: 201-209.
    [17] G. Fang, D. Li, B.L. Yao, Vacuum 68 (2003) 63.
    [18] X. Yu, J. Ma, F. Ji, Y. Wana, X. Zhang, C. Cheng, H. Ma, Appl. Surf. Sci.239 (2005) 222.
    [19] Douglas B. Chrisey and Graham K. Hubler, John Wiley & Sons, “Pulsed Laser Deposition of Thin Films” (1994).
    [20] 劉庭宇,電流模式與介面活性劑對超臨界電鍍鎳鍍層之影響探討”,國立台北科技大學製造科技研究所(2011)。
    [21] A. Brenner,“Electrodeposition of Alloys: Principles and Practice.” Elsevier, (2013): 1-734.
    [22] Chang, P. C., Fan, Z., Wang, D., Tseng, W. Y., Chiou, W. A., Hong, J., & Lu, J. G., "ZnO nanowires synthesized by vapor trapping CVD method." Chemistry of materials 16.24 (2004): 5133-5137.
    [23] Yoshida, H., Sone, M., Mizushima, A., Abe, K., Tao, X. T., Ichihara, S., & Miyata, S., Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution." Chemistry Letters 11 (2002):1086-1087.
    [24] D.Pletcher,F.C. Walsh,"Industrial Electrochemistry(2nd edn.) ",Chapman and Hall, Paris (1990), p. 437
    [25] PT Kissinger, WR Heineman ,“Cyclic voltammetry”,Journal of Chemical Education, ACS Publications(1983).
    [26] S. M. Sze, “Semiconductor Device Physics and Technology”, Wiley,(1985),p278.
    [27] S. M. Sze, D. J. Coleman, JR. ,and A. Loya, “CURRENT TRANSPORT IN METAL-SEMICOMDUCTOR-METAL(MSM) STRUCTURE”, Solid-State Electronics, 14, (1971),p1209-1218.
    [28] Wang, Y., Gan, L., Chen, J., Yang, R. & Zhai, T. Achieving highly uniform two-dimensional PbI2 fakes for photodetectors via space confned physical vapor deposition. Science Bulletin 62, 1654–1662 (2017).
    [29] Zhou, X. et al. Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High‐Performance Photodetectors. Advanced Materials 27, 8035–8041 (2015).
    [30] Ma, Y. Ultrathin SnSe2 fakes: a new member in two-dimensional materials for high-performance photodetector. Sci. Bull 60,p.1789–1790 (2015).
    [31] C.H. Chen, S. J. Chang, Y. K. Su, J. Y. Chi, C. A. Chang, J. K. Sheu, J. F. Chen, “GaN metal -semiconductor metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contact ”, IEEE Photon. Technol. Lett., 13.(2001),p.848-850.
    [32] E. Monroy, E. Muñoz1, F. J Sánchez1, F. Calle1, E. Calleja1, B. Beaumont, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., 13,(1998),p.1042-1046
    [33] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes,B. Goldenberg, W. Yang, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-np-i-n and AlGaN(p)-GaN(i)-GaN(n)AlGaN(p)-GaN(i)-GaN(n)structures”,Appl. Phys. Lett., 71,(1997),p.2154-2156.
    [34] E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita,and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes”,Thin Solid Films,516,(2008),p.1629-1633.
    [35] S. M. Sze and K. K. Ng, “Physics of semiconductor devices”,3rd ed3,John Wiley&Sons,(2007).
    [36] M. Ruckh, D.Schmid, M.Kaiser, R.Schäffler, T.Walter, H.W.Schock, “Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films.” SOLAR ENERGY MATERIALS AND SOLAR CELLS 41-2 (1996): 335-343.
    [37] D.Braunger, D.Hariskos, G.Bilger, U.Rau, H.W.Schock, “Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films.” Thin Solid Films 361-362 (2000): 161-166.
    [38] Gobeaut, A., et al. “Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films.” Thin Solid Films 517.15 (2009): 4436-4442.
    [39] Motohiro Uo, et al. “Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens.” Japanese Dental Science Review 51.1 (2015): 2-9.
    [40] 林麗娟, ”X 光繞射原理及其應用”, X 光材料分析技術與應用專 題, 1994 年.
    [41] Cullity, Bernard Dennis., "Elements of X-ray Diffraction", Addison Wesley, Reading, Mass., (1978).
    [42] 周昱君,以分層電化學沉積製備CuInSe2薄膜與其光導體應用之研究,國立成功大學碩士論文,2021。
    [43] 王靖宇,CuInSe2蕭特基二極體與 β-Ga2O3蕭特基二極體之研究, 國立成功大學碩士論文,2020。
    [44] M. Ramasamy, C.Y. Jung, Y.B. Yeon, C.W. Lee, “Electrochemical Atomic Layer Deposition of CuIn(1-x)GaxSe2 on Mo Substrate.” Journal of The Electrochemical Society, 164.14 (2017): D1006-D1014.
    [45] J. H. Cha, W. J. Woo, S. C. Jeong, S. Jung, H. J. Lee, D. Y. Jung, “Complexing agent-assisted highly dense CuInSe2 thin films prepared by one-step electrochemical deposition”, Journal of Electroanalytical Chemistry 808 (2018) 211-217.
    [46] 黃千輝,利用電鍍和硒化方式製備二硒化銅銦薄膜之研究,國立成功大學碩士論文,2014。
    [47] M.A. Omer, Elementary Solid State Physics, Addiso-We sly Publishing (1975).
    [48] Themlin, J.M., Sporken, R., Darville, J., Caudano, R., Gilles, J.M. and Johnson, R.L.,” Resonant-photoemission, study of SnO2: cationic origin of the defect band-gap states”, Physical Review B, 42(18) (1990):11914-11925.
    [49] Zhong, M. et al. Flexible photodetectors based on phase dependent PbI2 single crystals. Journal of Materials Chemistry C 4, 6492–6499 (2016).
    [50] Tsai, D.-S. et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7, 3905–3911 (2013)
    [51] M. Shkir , M. T. Khan, I. M. Ashraf, A. Almohammedi, E. Dieguez & S.AlFaify, High-performance visible light photodetectors based on inorganic CZT and InCZT single crystals, Scientific Reports -Nature(2019).

    下載圖示 校內:2024-07-31公開
    校外:2024-07-31公開
    QR CODE