| 研究生: |
陳信安 Chen, Shin-An |
|---|---|
| 論文名稱: |
改良式同軸絞線電纜軟性線圈應用於感應加熱 Improved Flexible Coil Using Coaxial Stranded Cable for Induction Heating Applications |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 電磁熱燒灼 、感應加熱 、絞線線圈 、有限元素分析法 |
| 外文關鍵詞: | Electromagnetic thermotherapy, Induction heating, Stranded wire coil, Finite element method |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年醫學治療發展朝向精準醫療,而電磁熱療為治療癌症疾病的新型療法,其治療方式是利用電磁感應加熱的原理來進行熱治療,透過高週波機台在感應線圈內放入導磁性金屬針具,輸出大電流至感應加熱線圈產生交變磁場,金屬針具會因交變磁場產生渦電流,進而使針具迅速升溫,藉此殺死腫瘤細胞達到熱燒灼效果。由於軟性感應加熱線圈可依需求快速改變其線圈形狀,對於熱燒灼治療應用有相當的便利性,故本研究主題在於設計改良其銅片線圈,因磁場強弱程度會直接影響金屬針具的加熱效果,所以藉由改變線圈線材以絞線取代銅片,增加磁場強度來提高其溫升效果。本文先利用有限元素分析法軟體模擬其絞線線圈與銅片線圈間的電磁場分布,並使用電路模擬軟體針對全橋串聯諧振電路系統進行等效模型之模擬,藉由模擬與量測結果做比對,最後繞製多條不同截面積線徑的絞線線圈進行感應加熱實驗,再與銅片線圈進行加熱效果比較,以驗證本文所提出之設計方法與可行性。經加熱實驗結果顯示,兩種感應線圈在直徑及深度大小皆相同件下,當金屬導磁針具進行感應加熱時越靠近線圈邊緣時,絞線線圈會比銅片線圈有更好的加熱效果,進而對其結果進行分析與探討。
In recent years, the development of medical treatment is toward precision medicine, and electromagnetic thermotherapy is a new type of treatment for cancer diseases. The treatment method is to use the principle of electromagnetic induction to carry out heating treatment, which is placed in the coil through a high-frequency induction heater. The magnetically conductive metal needle is heated by the eddy currents that induced from the magnetic field which generated by using an induction heating coil with large alternating currents. Because the flexible coil can quickly change its coil shape according to the needs. Hence, the subject of this research is to design and improve its soft copper coil, so by changing the coil wire to replace the copper sheet with stranded wire, increase the strength of the magnetic field to improve its temperature rise effect. In this paper, the finite element method is used to simulate the electromagnetic field distribution between the stranded wire coil and the copper sheet coil. The circuit simulation is used to simulate the equivalent model of the full-bridge series resonant circuit system. Finally, we wound some stranded coils with different section area diameters for induction heating experiments and then compared the heating effect with copper coils to verify the design method and feasibility proposed in this paper. Under the condition that the two induction coils' diameter and depth are the same, the heating experiment results show the closer to the coil edge, the stranded wire coil will have better heating effect than the copper sheet coil when the metal magnetic needle is heated by induction.
[1]A. Moritz,「Cancer Is Not a Disease - It's a Healing Mechanism」,ENER CHI.COM, 2017。
[2]S. Mukherjee,「The Emperor of All Maladies: A Biography of Cancer」,Scribner,2011。
[3]B. Thiesen and A. Jordan, “Clinical applications of magnetic nanoparticles for hyperthermia,” International Journal of Hyperthermia, vol. 24, no. 6, pp. 467-474, Apr. 2008.
[4]A. Jordan, P. Wust, H. Fahling, W. John, A. Hinz and R. Felix, “Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia,” International Journal of Hyperthermia, vol. 9, no. 1, pp. 51-68, 1993.
[5]G. Ma and G. Jiang, “Review of tumor hyperthermia technique in biomedical engineering frontier,” 2010 3rd International Conference on Biomedical Engineering and Informatics, vol. 4, pp. 1357-1359, Nov. 2010.
[6]V. Surducan, E. Surducan, R. Ciupa and C. Neamtu, “Determination of microwave generators' performance for medical applications,” 2011 7TH International Symposium on Advanced Topics in Electrical Engineering G (ATEE), pp. 1-4, July 2011.
[7]A. Giombini, A. Di Cesare, M. Di Cesare, M. Ripani and N. Maffulli, “Localized hyperthermia induced by microwave diathermy in osteoarthritis of the knee: a randomized placebo-controlled double-blind clinical trial,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 19, no. 6, pp. 980-987, 2011.
[8]R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, “Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer,” British Journal of Surgery, vol. 97, no. 2, pp. 220-225, Feb. 2010.
[9]R. J. DeWall, T. Varghese and C. L. Brace, “Quantifying local stiffness variations in radiofrequency ablations with dynamic indentation,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 3, pp. 728-735, Mar. 2012.
[10]R. Zuchini, H. W. Tsai, C. Y. Chen, C. H. Huang, S. C. Huang, G. B. Lee,C. F. Huang, and X. Z. Lin, “Electromagnetic thermotherapy using fine needles for hepatoma treatment,” European Journal of Surgical Oncology (EJSO), vol. 37, no. 7, pp. 604-610, July 2011.
[11]F. Tascioglu, S. Kuzgun, O. Armagan and G. Ogutler, “Short-term effectiveness of ultrasound therapy in knee osteoarthritis,” Journal of International Medical Research, vol. 38, no. 4, pp. 1233-1242, Aug. 2010.
[12]Y. Laufer and G. Dar, “Effectiveness of thermal and athermal short-wave diathermy for the management of knee osteoarthritis: a systematic review and meta-analysis,” Osteoarthritis and cartilage, vol. 20, no. 9, pp. 957-966, Sep. 2012.
[13]J. W. Jenne, T. Preusser and M. Gunther, “High-intensity focused ultrasound:principles, therapy guidance, simulations and applications,” Zeitschrift fur Medizinische Physik, vol. 22, no. 4, pp. 311-322, Dec. 2012.
[14]A. Golberg and M. Yarmush, “Nonthermal Irreversible Electroporation Fundamentals, Applications, and Challenges,” IEEE Transactions on biomedical Engineering, vol. 60, no. 3, pp. 707-714, Mar. 2013.
[15]C. C. Chen, C. C. Tai, S. J. Huang, Y. H. Chen and C. H. Lin, “Thermotherapy induction heating apparatus with new magnetic-wrapped coil design," IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2592-2600, May 2014.
[16]C. F. Huang, X. Z. Lin and Y. R. Yang, “Application of magnetic circuit and multiple-coils array in induction heating for improving localized hyperthermia," International Conference on Bioinformatics and Biomedicine, 2009.
[17]C. F. Huang, H. Y. Chao, H. H. Chang and X. Z. Lin, “A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia," Electromagnetic biology and medicine, vol. 35, no. 1, pp. 59-64, 2016.
[18]V. Sharma, A. Patel, A. Sharma and K. Mittal, “Design and analysis of magnetic coil for relativistic magnetron,” 2014 International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), pp. 181-183, 2014.
[19]S. C. Huang, J. W. Kang, H. W. Tsai, Y. S. Shan, X. Z. Lin and G. B. Lee, “Electromagnetic thermotherapy for deep organ ablation by using a needle array under a synchronized-coil system,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 11, pp. 2733-2739, Nov. 2014.
[20]C. C. Tai, C. C. Chen, C. C. Kuo, F. W. Lin, C. J. Chang, Y. H. Chen, et al., “Deep-magnetic-field generator using flexible laminated copper for thermotherapy applications,” IEEE Transactions on Magnetics, vol. 50, no. 11, pp. 1-4, Nov. 2014.
[21]C. H. Liu, S. C. Huang, Y. J. Chao, X. Z. Lin and G. B. Lee, “Hemostasis Plug for an Electromagnetic Thermotherapy and Its Application for Liver Laceration,” Annals of biomedical engineering, vol. 44, no. 4, pp. 1310-1320, Apr. 2016.
[22]Y. Li, E. Cosoroaba, L. Maharjan and B. Fahimi, “Comparative Study of a New Coil Design With Traditional Shielded Figure-of-Eight Coil for Transcranial Magnetic Stimulation,” IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1-4, Mar. 2018.
[23]I. Lope, J. Acero and C. Carretero, “Analysis and optimization of the efficiency of induction heating applications with litz-wire planar and solenoidal coils,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5089-5101, July 2016.
[24]B. Patidar, M. M. Hussain, S. K. Jha, B. Dikshit and A. Sharma, “Modelling and experimental demonstration of a litz coil-based high-temperature induction heating system for melting application,” IET Electric Power Applications, vol. 12, no. 2, pp. 161-168, 2017.
[25]陳明坤、戴政祺,「半橋式串聯共振變流器於磁性奈米粒子熱療系統之應用」,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2006。
[26]陳建璋,「半橋串聯共振式磁奈米粒熱療加熱系統研製」,國立成功大學電機工程學系碩士論文,2007。
[27]陳建良,「變頻半橋感應式磁奈米粒熱療加熱系統」,國立成功大學電機工程學系碩士論文,2007。
[28]林子翔,「奈米粒熱療加熱系統之中低頻磁場聚焦探頭設計」,國立成功大學電機工程學系碩士論文,2009。
[29]孔維彬,「奈米磁粒感應加熱線圈設計與聚磁效應模擬」,國立成功大學電機工程學系碩士論文,2009。
[30]曾名弘,「奈米粒熱療加熱系統之模擬與探頭模型分析」,國立成功大學電機工程學系碩士論文,2011。
[31]郭仲欽,「可撓式磁感應加熱線圈應用於金屬針加熱之溫度模擬與組織燒灼面積分析」,國立成功大學電機工程學系碩士論文,2014。
[32]林方偉,「應用於電磁熱療之新型可撓式線圈設計」,國立成功大學電機工程學系碩士論文,2014。
[33]洪家銘,「深度磁場感應加熱線圈設計與分析」,國立成功大學電機工程學系碩士論文,2015。
[34]洪建智,「應用田口法與基因演算法於電磁熱療軟性線圈優化設計」,國立成功大學電機工程學系碩士論文,2018。
[35]S. Nomura and T. Isobe, “Design Study on High-Frequency Magnets for Magnetic Hyperthermia Applications,” IEEE Transactions on Applied Superconductivity, vol. 28, no. 3, pp. 1-7, Apr. 2018.
[36]H. Xu, S. Nomura and T. Isobe, “Design and Development of a High-Frequency Magnet Prototype for Magnetic Hyperthermia Applications,” IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, pp. 1-6, June 2020.
[37]李慶烈譯,「電磁學(第七版)(Ulaby 7/e)」,東華書局,2017。
[38]S. Sharif and K. Sharif, “Influence of skin effect on torque of cylindrical eddy current brake,” 2009 International Conference on Power Engineering, Energy and Electrical Drives, pp. 535-539, 2009.
[39]W. Zhao, X. Wang, S. Wu, S. Cui, C. Gerada and H. Yan, “Eddy Current Losses Analysis and Optimization Design of Litz-Wire Windings for Air-Core Compulsators,” IEEE Transactions on Plasma Science, vol. 47, no. 5, pp. 2532-2538, May 2019.
[40]J. Pries, E. Gurpinar, L. Tang and T. A. Burress, “Continuum Modeling of Inductor Magnetic Hysteresis and Eddy Currents in Resonant Circuits,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1703-1714, Sept. 2019.
[41]謝芳生、江昭皚譯,「工程電磁學 8/e」,東華書局,2012。
[42]皮托科技,「電腦輔助分析模擬軟體學習寶典」,皮托科技股份有限公司,2014。
[43]皮托科技,「COMSOL Multiphysics電磁模擬教學」,皮托科技股份有限公司,2014。
校內:2025-07-16公開