簡易檢索 / 詳目顯示

研究生: 周偉倫
Chou, Wei-Len
論文名稱: 具單/雙層相變化材料微膠囊之水浮式光電池模組動態性能模擬分析
A Dynamic Simulation study on Performance of a Water-Surface Floating Photovoltaic Module Integrated with Single/Double Layers of Packed Microencapsulated Phase Change Material
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 水浮式光電池相變化微膠囊溫度控制
外文關鍵詞: Water-surface floating photovoltaic module, Microencapsulated phase change material, Thermal management
相關次數: 點閱:146下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨於針對浮置於水域表面之光電池模組系統,藉於其背面附置單/雙層相變化材料微膠囊模組,以動態數值模擬分析光電池於日照期間其溫度變化及發電效率情形;此外,並探究相變化材料微膠囊層日照期間所儲存熱能於夜間釋放至底部水層之保溫特性。在文中,數值模擬分析針對台南地區夏/冬季節環境條件(包括:空氣/天空溫度、風速、日照量、水層溫度與流速之動態變化),改變相變化材料微膠囊熔點(夏季30~26℃、冬季18~16℃)和其夾層厚度(5cm、3cm)等參數,探討光電池模組系統與環境間熱交換動態變化及其所致發電效能的影響。研究結果顯示在夏季環境下,附置單層厚度5cm之相變化微膠囊層(其熔點為30℃)於光電池模組能有效地提升其發電效率及發電量;而在冬季環境下,則附置雙層厚度均為5cm之相變化微膠囊層(其熔點分別為18℃/16℃) 於光電池模組夜間可有效釋放熱量至底層水域,發揮水層保溫功效,而抑制夜間輻射冷卻災害。

    This paper aims to explore, via dynamic simulations , the efficacy of attaching single/two layers of microencapsulated phase change material (MEPCM) to a water-surface floating photovoltaic module for managing its thermal environment and thus improving its efficiency of electricity generation under various daily operation conditions. The numerical simulations undertaken focus primarily on the effects of the thickness (5cm and 3cm) as well as the melting temperatures, which were 26℃-30℃ for the summer season and 16℃-18℃ for the winter season, respectively, of the MEPCM layers on their thermal management and electric efficacy under the typical weather conditions locally observed during the summer and winter seasons at Tainan area of Taiwan. The numerical results clearly show that under the summer weather condition considered, the electrical performance of PV module can be effectively enhanced by using a single layer of MEPCM of 5 cm in thickness with the melting point at 30℃; while under the winter weather condition simulated, the PV module attached with two layers (with thickness fixed at 5 cm) of MEPCM having the melting temperatures, respectively, at 18℃ and 16℃ appears most effective in releasing thermal energy downward to and thus alleviating the radiation cooling over the water layer during the night time.

    第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 5 1-4 本文架構 5 第二章 物理/數學模型與數值方法 13 2-1 物理模型 13 2-2 數學模型 14 2-2-1 數學模型基本假設 14 2-2-2 計算區域 15 2-2-3 光電池之能量傳遞 15 2-2-4 光電池/單層相變化微膠囊層系統之數學式 19 2-2-5 光電池/雙層相變化微膠囊層系統之數學式 21 2-3 初始條件、邊界條件與環境參數 22 2-3-1 光電池之初始與邊界條件 22 2-3-2 相變化微膠囊容器之初始與邊界條件 22 2-3-3 環境參數設定 23 2-4 無因次數學模型 26 2-4-1 光電池之無因次數學式 26 2-4-2 單層相變化微膠囊之無因次數學式 26 2-4-3 雙層相變化微膠囊之無因次數學式 27 2-4-4 無因次初始條件、邊界條件與環境參數 28 2-4-5 無因次變數與參數定義 32 2-5 相關熱/電物理量之計算 33 2-6 參數設定 35 2-7 數值方法 37 2-7-1 網格系統 38 2-7-2 離散方法 38 2-7-3 解題流程 39 第三章 結果與討論 42 3-1 環境參數驗證 42 3-1-1 太陽輻射值之驗證 42 3-1-2 漁塭表面風速之驗證 43 3-1-3 漁塭表面環境空氣溫度之驗證 43 3-1-4 夏季氣候環境條件下光電池之性能表現結果 43 3-1-5 冬季氣候環境條件下光電池表面溫度模擬結果 44 3-1-6 光電池發電量 45 3-1-7 光電池表面溫度分布 46 3-2 具單層相變化微膠囊光電池系統之性能表現 46 3-2-1 夏季氣候條件下系統性能表現 46 3-2-2 冬季氣候條件下系統性能表現 51 3-3 具雙層相變化微膠囊之性能表現 56 3-3-1 夏季氣候系統之性能表現 57 3-3-2 冬季氣候系統之性能表現 61 第四章 結論及未來研究方向 93 4-1 結論 93 4-2未來工作 94 参考文獻 96 附錄 98

    [1] Skoplaki, E., and Palyvos, J.A., “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Solar Energy, vol. 83, pp. 614-624, 2009.
    [2] Ye, Z., Nobre, A., Reindl, T., Luther, J., Reise, C., “On PV module temperatures in tropical regions,” Solar Energy, vol. 88, pp. 80-87, 2013.
    [3] Ueda, Y., Sakurai, T., Tatebe, S., Itoh, A., Kurokawa, K., “Performance analysis of PV systems on the water,” EU PVSEC, 4EP.1.3, pp. 2670-2673, 2008.
    [4] Teo, H.G., Lee, P.S., Hawlader, M.N.A., “An active cooling system for photovoltaic modules,” Applied Energy, vol. 90(1), pp. 309-315, 2012.
    [5] Valeh-e-Sheyda, P., Rahimi, M., Karimi, E., Asadi, M., “Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study,” Energy Conversion and Management, vol. 69, pp. 122-130, 2013.
    [6] Akyuza, E., Coskunb, C., Oktayb, Z., Dincerc., I., ” A novel approach for estimation of photovoltaic exergy efficiency,” Energy, vol. 44(1): pp. 1059-1066, 2012.
    [7] Waqas, A. and S. Kumar, “Phase Change Material (PCM)-based solar air heating system for residential space heating in winter,” International Journal of Green Energy, vol. 10(4), pp. 402-426, 2013.
    [8] Jin, X., Medina, M.A. and Zhang, X.S., “On the importance of the location of PCMs in building walls for enhanced thermal performance,” Applied Energy, vol.106, pp. 72-78, 2013.
    [9] Huang, M.J., “The effect of using two PCMs on the thermal regulation performance of BIPV systems,” Solar Energy Materials and Solar Cells, vol. 95(3), pp. 957-963, 2011.
    [10] Tanuwijaya, A.O., ”具相變化微膠囊層光電池模組之熱/電性能數值模擬,” 國立成功大學機械工程所碩士論文,2011.
    [11] 周柏庭, ”具單/雙層水飽和相變化微膠囊層之光電池模組之熱/電性能數值模擬,” 國立成功大學機械工程所碩士論文,2012.
    [12] Zsembinszki, G., Farid, M.M., and Cabeza, L.F., “Analysis of implementing phase change materials in open-air swimming pools,” Solar Energy, vol.86(1), pp. 567-577, 2012.
    [13] Zsembinszki, G., Solé, C., Castell, A., Pérez, G., Cabeza, L.F.,” The use of phase change materials in fish farms: A general analysis,” Applied Energy, vol.109, pp. 488-496, 2013.
    [14] Swinbank, W. C., "Long-Wave Radiation from Clear Skies," Quarterly Journal of the Royal Meteorological Society, vol. 89, pp. 339-348, 1963.
    [15] 行政院農委會水產試驗所(Fisheries Research Institute ,COA)相關數據,2012.

    下載圖示 校內:2018-08-22公開
    校外:2018-08-22公開
    QR CODE