簡易檢索 / 詳目顯示

研究生: 林佑霖
Lin, You-Lin
論文名稱: 以雙金屬觸媒對大豆油一步驟加氫處理製備生質燃油之研究
Study on One-Step Hydrotreatment of Soybean Oil over Bimetallic Ni-Mo/Zeolite Y Catalysts for Biofuel Production
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 123
中文關鍵詞: 大豆油Y型沸石鎳鉬雙金屬加氫處理綠色燃料
外文關鍵詞: Soybean oil, Zeolite Y, Bimetallic catalysts, Hydrotreatment, Green fuel
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界人口膨脹與經濟快速成長,對於能源的需求與消耗與日俱增,大量使用化石燃料已對環境與人體健康造成巨大衝擊,發展可再生的替代能源為當今各國的關注議題。生質燃料因來源廣泛且豐富而具有替代化石燃料的潛力,目前已商業化的作法為將植物油透過轉酯化反應生成生質柴油,然而高含氧量會導致低溫流動性與氧化穩定性不佳,因此近年研究方向改以加氫處理,去除植物油中的氧原子而生成綠色柴油,若使用酸性觸媒還能促進異構化與裂解反應,進一步提升產物的流動性質。目前已商業化的製程多將去氧與異構化分為兩步驟進行,且使用成本較高的貴金屬觸媒,因此本研究以價格較低廉的過渡金屬擔載於酸性載體,以金屬點位提供去氧活性;酸性點位催化異構化與裂解反應,同時催化加氫去氧、異構化與裂解反應,一步驟將大豆油轉化為碳氫化合物。
    本實驗選擇Y型沸石作為酸性載體,利用濕式含浸法將鎳鉬雙金屬擔載於沸石表面,金屬鎳具有活化氫氣的功能,並能將活化後氫氣溢流至整體觸媒表面;二氧化鉬則是能提供氧空缺,對C-O鍵結斷裂具有選擇性,比較不同鎳鉬擔載量與反應條件對產物之影響,並對反應後的回收觸媒進行鑑定與重複使用性測試,探討觸媒失活的可能原因。實驗結果發現鎳/鉬質量比為4時的催化效果最佳,且優於鎳單金屬觸媒,在提供足量氫氣的情況下增加金屬總擔載量亦有助於去氧反應的進行,提升反應溫度則能同時促進去氧、異構化與裂解反應,最終以32Ni-8Mo(R)/Y觸媒於350°C、固定壓力40 bar下可得到去氧、異構化與裂解程度最高的產物。然而雙金屬觸媒並不具有良好的重複使用性,使用回收觸媒再度進行反應發現無法完全去除氧原子,即使將回收觸媒再生仍無法達到新鮮觸媒的催化效果,經儀器鑑定後推測應為碳氫化合物吸附於觸媒,導致酸性與比表面積大幅降低,使觸媒的去氧/異構化/裂解活性下降。

    In this study, the hydrotreatment of soybean oil for liquid alkane fuels production was conducted with the zeolite Y supported Ni and Mo catalysts. The bimetallic catalysts were successfully synthesized by impregnation method, noted as Ni-Mo/Y. Prior to the hydrotreatment, Ni-Mo/Y were activated in the hydrogen atmosphere at 550°C, denoted as Ni-Mo(R)/Y. The hydrotreatment of soybean oil was performed in the presence of various Ni-Mo(R)/Y catalysts with decalin as solvent in a semi-batch reactor for 6 h. Fresh and spent catalysts were characterized by XRD, XPS, ICP-OES, H2-TPR, NH3-TPD, and N2 physisorption analyzer. The products were analyzed qualitatively by FT-IR and GC-MS, while the yield and selectivity were determined quantitatively by GC-FID. As a result, the best degree of deoxygenation was obtained when the Ni/Mo mass ratio is 4, which was also better than Ni monometallic catalysts. Overall, the hydrotreatment of soybean oil catalyzed by 32Ni-8Mo(R)/Y at 350°C and 40 bar could completely remove the oxygen atoms, possessing the highest yield to alkane products and the highest selectivity to the middle distillate simultaneously. As for the reusability test, it was found that oxygen atoms could not be completely removed by using the recycled catalysts. Even if the recycled catalysts were regenerated, the catalytic performance could not achieve to that of fresh catalysts. It is speculated that the main reason for the catalyst deactivation is the product adsorbed on the catalysts, resulting in a significant decrease in acidity and specific surface area and the coverage of catalytic active sites.

    摘要 I Abstract II 誌謝 XX 目錄 XXI 圖目錄 XXV 表目錄 XXVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧 4 2-1 生質燃料 4 2-1-1 簡介 4 2-1-2 生質航空燃油 6 2-1-3 航空燃油性質規範 8 2-1-4 生質航空燃油技術發展 9 2-2 去氧反應 11 2-2-1 去氧反應機制 11 2-2-2 觸媒選擇 12 2-2-2-1 過渡金屬硫化物觸媒 13 2-2-2-2 貴金屬觸媒 14 2-2-2-3 過渡金屬觸媒 15 2-2-2-4 過渡金屬磷化物觸媒 16 2-2-2-5 過渡金屬氮化物及碳化物觸媒 17 2-2-2-6 觸媒載體選擇 17 2-2-2-7 觸媒失活 18 2-2-3 反應影響因素 19 2-3 加氫異構化與加氫裂解反應 21 2-4 沸石 22 2-4-1 沸石簡介 22 2-4-2 沸石結構 23 2-4-3 沸石特性與應用 25 2-4-4 Y型沸石 27 第三章 實驗 28 3-1 實驗架構及流程 28 3-2 實驗藥品 29 3-3 實驗設備 32 3-4 實驗方法 34 3-4-1 雙金屬觸媒合成與活化 34 3-4-1-1 濕式含浸法製備鎳鉬雙金屬觸媒 34 3-4-1-2 觸媒活化 34 3-4-2 觸媒鑑定與分析 35 3-4-2-1 X光繞射分析儀 (XRD) 35 3-4-2-2 比表面積分析儀 36 3-4-2-3 掃描式電子顯微鏡 (SEM) 37 3-4-2-4 感應耦合電漿原子發射光譜儀 (ICP-OES) 37 3-4-2-5 氫氣程序升溫還原 (H2-TPR) 38 3-4-2-6 X射線光電子能譜儀 (XPS) 39 3-4-2-7 氨氣程序升溫脫附 (NH3-TPD) 40 3-4-2-8 吡啶紅外線光譜儀 (Py-IR) 40 3-4-3加氫反應 41 3-4-4 產物鑑定與分析 42 3-4-4-1 氣相層析儀-火焰離子化偵測器 (GC-FID) 42 3-4-4-2 氣相層析-質譜儀 (GC-MS) 44 3-4-4-3 傅立葉轉換紅外線光譜儀 FT-IR) 44 3-4-4-4 油料酸價測試 45 3-4-4-5 油料碘價測試 45 3-4-5 氫氣消耗量計算 46 第四章 結果與討論 48 4-1 新鮮觸媒鑑定與性質分析 48 4-1-1 雙金屬觸媒XRD鑑定 48 4-1-2 雙金屬觸媒比表面積與孔洞性質鑑定 51 4-1-3 雙金屬觸媒SEM鑑定 54 4-1-4 雙金屬觸媒ICP-OES鑑定 56 4-1-5 雙金屬觸媒H2-TPR鑑定 58 4-1-6 雙金屬觸媒XPS鑑定 60 4-1-7 雙金屬觸媒NH3-TPD鑑定 63 4-1-8 雙金屬觸媒Py-IR酸性鑑定 65 4-2 觸媒催化加氫反應 66 4-2-1 空白實驗 66 4-2-1-1 十氫萘之空白實驗 66 4-2-1-2 未擔載金屬的Y型沸石之空白實驗 67 4-2-2 鎳鉬比例對加氫反應之影響 68 4-2-3 金屬總擔載量對加氫反應之影響 75 4-2-4 反應壓力對加氫反應之影響 79 4-2-5 反應溫度對加氫反應之影響 82 4-2-6 氣/液相產物GC-MS分析 86 4-3 回收觸媒之重複使用性測試與鑑定 91 4-3-1 回收觸媒之重複催化效果 91 4-3-2 回收觸媒XRD鑑定 94 4-3-3 回收觸媒比表面積與孔洞性質鑑定 95 4-3-4 回收觸媒SEM鑑定 97 4-3-5 回收觸媒ICP-OES鑑定 98 4-3-6 回收觸媒XPS鑑定 100 4-3-7 回收觸媒NH3-TPD鑑定 102 4-3-8 回收觸媒Py-IR酸性鑑定 103 4-3-9 回收觸媒FT-IR鑑定 104 第五章 結論與未來展望 106 5-1 結論 106 5-2 未來展望 107 參考文獻 108 附錄 116 A. GC-FID檢量線 116 B. 壓縮因子圖 119 C. 不同觸媒再生方法比較 120

    Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green chemistry, 12(9), 1493-1513.

    Ambursa, M. M., Juan, J. C., Yahaya, Y., Taufiq-Yap, Y., Lin, Y.-C., & Lee, H. V. (2021). A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. Renewable and Sustainable Energy Reviews, 138, 110667.

    Ameen, M., Azizan, M. T., Yusup, S., Ramli, A., & Yasir, M. (2017). Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production. Renewable and Sustainable Energy Reviews, 80, 1072-1088.

    Argyle, M. D., & Bartholomew, C. H. (2015). Heterogeneous catalyst deactivation and regeneration: a review. Catalysts, 5(1), 145-269.

    ASTM Standard D5554-15. (2021). Standard Test Method for Determination of the Iodine Value of Fats and Oils. ASTM International, West Conshohocken, PA, DOI: 10.1520/D5554-15R21

    ASTM Standard D5555-95. (2017). Standard Test Method for Determination of Free Fatty Acids Contained in Animal, Marine, and Vegetable Fats and Oils Used in Fat Liquors and Stuffing Compounds. ASTM International, West Conshohocken, PA, DOI: 10.1520/D5555-95R17

    ASTM Standard D6584-21. (2021). Standard Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. ASTM International, West Conshohocken, PA, DOI: 10.1520/D6584-21

    ASTM Standard D7566-21. (2021). Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. ASTM International, West Conshohocken, PA, DOI: 10.1520/D7566-21

    Brorson, M., Carlsson, A., & Topsøe, H. (2007). The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM. Catalysis today, 123(1-4), 31-36.
    Busca, G. (2014). Zeolites and other structurally microporous solids as acid-base materials. Heterogeneous Catalytic Materials, 1, 197-249.

    Chen, L., Zhu, Y., Zheng, H., Zhang, C., Zhang, B., & Li, Y. (2011). Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. Journal of Molecular Catalysis A: Chemical, 351, 217-227.

    Chhabra, R. P. (2017). CRC handbook of thermal engineering: CRC press.

    Ding, R., Wu, Y., Chen, Y., Liang, J., Liu, J., & Yang, M. (2015). Effective hydrodeoxygenation of palmitic acid to diesel-like hydrocarbons over MoO2/CNTs catalyst. Chemical Engineering Science, 135, 517-525.

    Du, X., Li, D., Xin, H., Zhou, W., Yang, R., Zhou, K., & Hu, C. (2019). The Conversion of Jatropha Oil into Jet Fuel on NiMo/Al‐MCM‐41 Catalyst: Intrinsic Synergic Effects between Ni and Mo. Energy Technology, 7(5), 1800809.

    Furimsky, E. (2003). Metal carbides and nitrides as potential catalysts for hydroprocessing. Applied Catalysis A: General, 240(1-2), 1-28.

    Gong, S., Shinozaki, A., Shi, M., & Qian, E. W. (2012). Hydrotreating of jatropha oil over alumina based catalysts. Energy & Fuels, 26(4), 2394-2399.

    Hachemi, I., & Murzin, D. Y. (2018). Kinetic modeling of fatty acid methyl esters and triglycerides hydrodeoxygenation over nickel and palladium catalysts. Chemical Engineering Journal, 334, 2201-2207.

    He, Z., & Wang, X. (2012). Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for sustainable energy, 1(2013), 28-52.

    Hermida, L., Abdullah, A. Z., & Mohamed, A. R. (2015). Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, 42, 1223-1233.

    Hernando, H., Jiménez-Sánchez, S., Fermoso, J., Pizarro, P., Coronado, J., & Serrano, D. (2016). Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catalysis Science & Technology, 6(8), 2829-2843.

    Ibarra, J., Royo, C., Monzón, A., & Santamaria, J. (1995). Fourier transform infrared spectroscopic study of coke deposits on a Cr2O3–Al2O3 catalyst. Vibrational Spectroscopy, 9(2), 191-196.

    Jacobs, P., Flanigen, E. M., Jansen, J., & van Bekkum, H. (2001). Introduction to zeolite science and practice: Elsevier.

    Kennedy, M., & Bevan, S. (1974). A kinetic study of the reduction of molybdenum trioxide by hydrogen. Journal of the Less Common Metals, 36(1-2), 23-30.

    Kerr, G. T. (1989). Synthetic zeolites. Scientific American, 261(1), 100-105.

    Konkol, M., Wróbel, W., Bicki, R., & Gołębiowski, A. (2016). The influence of the hydrogen pressure on kinetics of the canola oil hydrogenation on industrial nickel catalyst. Catalysts, 6(4), 55.

    Kordouli, E., Sygellou, L., Kordulis, C., Bourikas, K., & Lycourghiotis, A. (2017). Probing the synergistic ratio of the NiMo/γ-Al2O3 reduced catalysts for the transformation of natural triglycerides into green diesel. Applied Catalysis B: Environmental, 209, 12-22.

    Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E., & Lycourghiotis, A. (2016). Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Applied Catalysis B: Environmental, 181, 156-196.

    Lee, C.-W., Lin, P.-Y., Chen, B.-H., Kukushkin, R. G., & Yakovlev, V. A. (2021). Hydrodeoxygenation of palmitic acid over zeolite-supported nickel catalysts. Catalysis today, 379, 124-131.

    Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis today, 41(1-3), 207-219.

    Li, K., Wang, R., & Chen, J. (2011). Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts. Energy & Fuels, 25(3), 854-863.

    Li, X., Luo, X., Jin, Y., Li, J., Zhang, H., Zhang, A., & Xie, J. (2018). Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels. Renewable and Sustainable Energy Reviews, 82, 3762-3797.

    Li, Y., Li, L., & Yu, J. (2017). Applications of zeolites in sustainable chemistry. Chem, 3(6), 928-949.

    Liang, J., Chen, T., Liu, J., Zhang, Q., Peng, W., Li, Y., . . . Fan, X. (2020). Chemoselective hydrodeoxygenation of palmitic acid to diesel-like hydrocarbons over Ni/MoO2@ Mo2CTx catalyst with extraordinary synergic effect. Chemical Engineering Journal, 391, 123472.

    Lin, C.-H., Chen, Y.-K., & Wang, W.-C. (2020). The production of bio-jet fuel from palm oil derived alkanes. Fuel, 260, 116345.

    Loewenstein, W. (1954). The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist: Journal of Earth and Planetary Materials, 39(1-2), 92-96.

    Lup, A. N. K., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds. Journal of industrial and engineering chemistry, 56, 1-34.

    Mars, P., & Van Krevelen, D. W. (1954). Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science, 3, 41-59.

    Mendes, M., Santos, O., Jordao, E., & Silva, A. (2001). Hydrogenation of oleic acid over ruthenium catalysts. Applied Catalysis A: General, 217(1-2), 253-262.

    Mishra, V. K., & Goswami, R. (2018). A review of production, properties and advantages of biodiesel. Biofuels, 9(2), 273-289.

    Niwa, M., Katada, N., & Okumura, K. (2010). Characterization and design of zeolite catalysts: solid acidity, shape selectivity and loading properties (Vol. 141): Springer Science & Business Media.
    Oh, S., Lee, J. H., Choi, I.-G., & Choi, J. W. (2020). Enhancement of bio-oil hydrodeoxygenation activity over Ni-based bimetallic catalysts supported on SBA-15. Renewable Energy, 149, 1-10.

    Olcese, R., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F., & Dufour, A. (2012). Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Applied Catalysis B: Environmental, 115, 63-73.

    Ono, Y. (2003). A survey of the mechanism in catalytic isomerization of alkanes. Catalysis today, 81(1), 3-16.

    Parry, E. (1963). An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 2(5), 371-379.

    Peng, B., Yao, Y., Zhao, C., & Lercher, J. A. (2012). Towards quantitative conversion of microalgae oil to diesel‐range alkanes with bifunctional catalysts. Angewandte Chemie International Edition, 51(9), 2072-2075.

    Peng, B., Zhao, C., Kasakov, S., Foraita, S., & Lercher, J. A. (2013). Manipulating catalytic pathways: deoxygenation of palmitic acid on multifunctional catalysts. Chemistry–A European Journal, 19(15), 4732-4741.

    Pestman, R., Koster, R., Pieterse, J., & Ponec, V. (1997). Reactions of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. Journal of Catalysis, 168(2), 255-264.

    Pimenta, J. L., Barreto, R. D., dos Santos, O. A., & de Matos Jorge, L. M. (2020). Effects of reaction parameters on the deoxygenation of soybean oil for the sustainable production of hydrocarbons. Environmental Progress & Sustainable Energy, 39(5), e13450.

    Ramesh, A., Tamizhdurai, P., Krishnan, P. S., Ponnusamy, V. K., Sakthinathan, S., & Shanthi, K. (2020). Catalytic transformation of non-edible oils to biofuels through hydrodeoxygenation using Mo-Ni/mesoporous alumina-silica catalysts. Fuel, 262, 116494.

    Ren, H., Yu, W., Salciccioli, M., Chen, Y., Huang, Y., Xiong, K., & Chen, J. G. (2013). Selective hydrodeoxygenation of biomass‐derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts. ChemSusChem, 6(5), 798-801.
    Romero, Y., Richard, F., & Brunet, S. (2010). Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism. Applied Catalysis B: Environmental, 98(3-4), 213-223.

    Senol, O. I. (2007). Hydrodeoxygenation of aliphatic and aromatic oxygenates on sulphided catalysts for production of second generation biofuels. Academic Department, Helsinki University of Technology.

    Shi, Y., Cao, Y., Duan, Y., Chen, H., Chen, Y., Yang, M., & Wu, Y. (2016). Upgrading of palmitic acid to iso-alkanes over bi-functional Mo/ZSM-22 catalysts. Green chemistry, 18(17), 4633-4648.

    Si, Z., Zhang, X., Wang, C., Ma, L., & Dong, R. (2017). An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts, 7(6), 169.

    Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and applied chemistry, 57(4), 603-619.

    Smith, J., Van Ness, H., & Abbott, M. (2005). Introduction to Chemical Engineering Thermodynamics, 7th ed.; McGraw-Hill, Singapore

    Singh, D., Sharma, D., Soni, S., Sharma, S., & Kumari, D. (2019). Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel, 253, 60-71.

    Snåre, M., Kubicˇkova, I., Mäki-Arvela, P., Eränen, K., & Murzin, D. Y. (2006). Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Industrial & engineering chemistry research, 45(16), 5708-5715.

    Tiwari, R., Rana, B. S., Kumar, R., Verma, D., Kumar, R., Joshi, R. K., . . . Sinha, A. K. (2011). Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures. Catalysis Communications, 12(6), 559-562.

    Topsøe, H., Clausen, B. S., & Massoth, F. E. (1996). Hydrotreating catalysis. In Catalysis (pp. 1-269): Springer.

    Ullah, Z., Bustam, M. A., & Man, Z. (2014). Characterization of waste palm cooking oil for biodiesel production. International Journal of Chemical Engineering and Applications, 5(2), 134.

    Wang, H. (2012). Biofuels production from hydrotreating of vegetable oil using supported noble metals, and transition metal carbide and nitride.

    Wang, H., Yan, S., Salley, S. O., & Ng, K. S. (2013). Support effects on hydrotreating of soybean oil over NiMo carbide catalyst. Fuel, 111, 81-87.

    Wang, W.-C., & Tao, L. (2016). Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, 53, 801-822.

    Weitkamp, J. (1975). The influence of chain length in hydrocracking and hydroisomerization of n-alkanes. In: ACS Publications.

    Weitkamp, J. (2000). Zeolites and catalysis. Solid state ionics, 131(1-2), 175-188.

    Weitkamp, J. (2012). Catalytic hydrocracking—mechanisms and versatility of the process. ChemCatChem, 4(3), 292-306.

    Woltz, C. (2005). Kinetic studies on alkane hydroisomerization over bifunctional catalysts. Technische Universität München.

    Yang, J., Xin, Z., Corscadden, K., & Niu, H. (2019). An overview on performance characteristics of bio-jet fuels. Fuel, 237, 916-936.

    Yang, Y.-n., Zhang, H.-k., En-jing, L., Zhang, C.-h., & Ren, J. (2011). Effect of Fe, Mo promoters on acetic acid hydrodeoxygenation performance of nickel-based catalyst. Journal of Molecular Catalysis (China), 25, 30-36.

    Yang, Y., Gilbert, A., & Xu, C. C. (2009). Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: A model compound study using phenol. Applied Catalysis A: General, 360(2), 242-249.

    Yang, Y., Wang, Q., Zhang, X., Wang, L., & Li, G. (2013). Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO2–Al2O3. Fuel processing technology, 116, 165-174.
    Zimmermann, N. E., & Haranczyk, M. (2016). History and utility of zeolite framework-type discovery from a data-science perspective. Crystal Growth & Design, 16(6), 3043-3048.

    李昭緯. (2019). ZSM-5沸石擔載鎳鉬金屬於棕櫚酸氫化反應以製備生質燃料之研究. 成功大學化學工程學系學位論文.

    林柏邑. (2020). ZSM-5沸石擔載鎳鉬雙金屬觸媒於大豆油加氫處理以製備生質燃料之研究. 成功大學化學工程學系學位論文.

    洪正宗, & 莊浩宇. (2018). 更蔚藍的天空─生質航空燃油. 科學發展一般報導, 551, 51-57.

    陳佳欣, 郭家倫, 趙裕, & 黃文松. (2018). 生質航油之國際應用趨勢及研發現況. 臺灣能源期刊, 5, 83-96.

    劉庭瑋. (2021). 雙功能金屬觸媒於大豆油加氫處理製備綠色燃料之研究. 成功大學化學工程學系學位論文.

    謝哲隆. (2014). 生質物熱解液化轉製航空生質燃料用油技術. 工業污染防治, 129, 45-58.

    無法下載圖示 校內:2027-07-31公開
    校外:2027-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE