簡易檢索 / 詳目顯示

研究生: 嚴志成
Yan, Zhi-cheng
論文名稱: 氮磷化銦鎵與砷化鎵異質結構之界面光電特性
Interfacial Electro-optic Properties of InGaP1-yNy/GaAs Heterostructures
指導教授: 黃正雄
Hwang, Jenn-Shyong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 51
中文關鍵詞: 界面態界面態密度異質結構氮磷化銦鎵砷化鎵
外文關鍵詞: Interfacial state density, InGaPN, GaAs, Interfacial state, Heterostructures
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們利用光調制光譜來探討氮磷化銦鎵與砷化鎵異質結構之光電特性。樣品為: In0.54Ga0.46P1-yNy/GaAs (y=0, 0.5%, 1.0%, 2.0%)。

      論文中的第一部份,我們以平行電容板模型作為基礎,直接由FKO之震盪週期求得內建電場F,即可求得樣品之界面電荷密度σi和被電子所佔據的界面態密度Dit。

      論文中的第二部份是量測不同激發光強度下的譜線,根據熱游子輻射理論和電流傳輸理論,我們可以從PR訊號強度隨著激發光束強度的變化中,求得樣品的界面內建電位Vbi和界面態密度。

      從兩個不同方法我們所求的結果極為吻合,我們發現到當氮的摻雜量愈高時,其界面電場及界面態密度愈小,而其成因則與晶格匹配的程度有關。

     Photoreflectance (PR) spectra were used to study the interfacial electro-optic properties of InGaPN/GaAs heterostructures fabricated by molecular beam epitaxy. The samples investigated were In0.54Ga0.46P1-yNy/GaAs (y=0, 0.5%, 1.0%, 2.0%).

     In the first part of this thesis, we based on our approach the electric capacityboard model, and evaluated the built-in electric field F by Franz-Keldysh oscillations (FKOs), obtaining the interfacial charge density σi and the interfacial state density Dit.

     In the second part of this thesis, PR spectra were measured under various pump beam intensities. Based on thermonic emission theory and current-transport theory, the interfacial state density as well as built-in potential Vbi were determined from the dependence of the PR intensity versus the pumping beam flux.

     We get an extremely close result from two different methods. The electric field at the interface and the interfacial state density decrease as the concentration of nitrogen increase. This is related to the magnitude of lattice mismatches.

    第一章 目錄………………………………………… 1 第二章 半導體異質結構的基本特性……………… 3 2-1 半導體異質結構的應用…………………… 7 第三章 光調制光譜學……………………………… 10 3-1 低電場調制………………………………… 14 3-2 Franz-Keldysh 振盪……………………… 16 3-3 光調制的過程……………………………… 20 3-4 譜線的擬合………………………………… 21 第四章 實驗裝置…………………………………… 23 第五章 InGaP1-yNy-GaAs界面性質之研究……… 27 5-1 實驗所量測的樣品結構…………………… 27 5-2 實驗的原理與過程………………………… 29 5-2-1 以平行電容板模型估計界面態密度…… 29 5-2-2不同激發光強度下的PR譜線…………… 30 5-2-3 PR訊號對激發光強度之擬合…………… 32 第六章 總結………………………………………… 43 參考文獻 …………………………………………… 46

    1. H.Kroemer,“Theory of a Wide-gap Emitter for Transistors,”Proc.IRE,45,1535(1957).
    2.L.Esaki,“New Phenomenon in Narrow Germanium p-n Junctions,”Phys.Rev.,109,603(1958).
    3.L.Esaki,R. Tsu,IBM J.Dev. 14,61(1970).
    4.R.N. Hall,et al.,“Coherent Light Emission from GaAs Junctions,”Phys.Rev.Lett.,9,366(1962)
    5.I.Alferov and R.F.Kazarinov,“Semiconductor Laser with Electrical Pummping,”U.S.S.R. Patent No.181937(1963)
    6.H.Kroemer, “A Propose Class of Heterojuction Injection Laser,”Proc.IEEE,51,1782(1963)
    7.C.Kittel“Introduction to Solid State Physics”John Wiley & SI.(1996).
    8.物理雙月刊(廿二卷六期)2000年12月
    9. See, for example, K. onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401(1986)
    10. S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444(1986)
    11. R. Dingle, W. Wiegman, and C. H. Henry, Phy. Rev. Lett. 33,827(1974)
    12. C. Weisbuch, R. C. Miller, R.Dingle, A.C. Gossard, and W. Wiegmann, Solid State Commu. 37,219(1981)
    13. D. Vignaud, X. Wallart, F. Mollot, and B. Sermage, J. Appl. Phys. 84, 2138(1998)
    14. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80(1985); R. D. Dupuis, R.C. Miller and P. M. Petroff, Mat. Letts. 3,398(1985)
    15. J. S. Hwang, W. Y. Chou, M. C. Hung, J. S. Wang and H. H. Lin, J. Appl. Phys. 82, 3888(1997)
    16. M. D. Pashley, K. W. Haberern, R. M. Feenstra and P. D. Kirchner, Phys. Rev. B48, 4612(1993)
    17. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429(1987)
    18. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151(1995)
    11. C. M. Lai, F. Y. Chang, C. W. Chang, C. H. Kao, H. H. Lin, G. J. Jan and Johnson Lee, Appl. Phys. Lett. 82, 3895(2003)
    19. X. Yin, H-M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Scl. Technol. A10, 131(1992)
    20. Weimin Zhou, M. Dutta, H. Shen, J. Pamulapati, Brian R. Bennett, Clive H. Perry, David W. Weyburne, J. Appl. Phys. 73, 1266(1993)
    21. T. Kanata, M. Matsunaga, H. Takakura, Y. Hamakawa and T. Nishino, J. Appl. Phys. 68, 5309(1990)
    22. D. Yan, E. Look, X. Yin, Fred H. Pollak and J. M. Woodall, Appl. Phys. Lett. 65, 186(1994)
    23. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett. 64, 3314(1994)
    24. W. Y. Chou, G. S. Chang, W. C. Hwang, and J. S. Hwang, J. Appl. Phys. 83, 3690(1998)
    25. J. S. Hwang, Y. C. Wang, W. Y. Chou, and S. L. Tyan, J. Appl. Phys. 83, 2857(1998)
    26. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, J. Appl. Phys. 86, 1765(1999)
    27. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081
    28. D. E. Aspnes, in M. Balkanski, Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p.109; also Surf. Sci, 37, 418(1973)
    29. D. E. Aspnes, Phys. Rev. B10, 4228(1974)
    30. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Ysai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065(1992)
    31. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth, 93, 481(1988)
    32. D. E. Aspnes and A. A. Studna, Phys. Rev. B7, 4605(1973)
    33. C. Van Hoof, K. Deneffe, J. DeBoeck, D. J. Arent, and G. Borghs, Appl. Phys. Lett. 54, 608(1989)
    34. J. S. Hwang, C. C. Chang, M. F. Chen, C. C. Chen, K. I. Lin, F. C. Tang, M. Hong and J. Kwo, J. Appl. Phys. 94, 348(2003)
    35. J. S. Hwang, G. S. Chang, W. C. Hwang, and W. J. Chen, J. Appl. Phys. 89, 1771(2001)
    36. Y. P. Varshni, Physica 34, 149(1967)
    37. 施敏, 半導體元件物理與製作技術(第二版),(國立交通大學出版社,新竹), p180
    38. J. L. Freeouf, and J. M. Woodall, Appl. Phys. Lett. 39, 727(1981)
    40. W. E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Scl. Technol. B6, 1245(1988)
    41. J. M. Garland, H. Abad, M. Viccaro and P. M. Raccah, Appl. Phys. Lett. 52, 1176(1988)
    42. R. N. Bhattacharya, H. Shen, P. Parayanthal, Fred H. Pollak, T. Coutts and H. Aharoni, Phys. Rev. B37, 4044(1988)
    43. M. D. Pashley, K. W. Haberern and R. M. Feenstra, J. Vac. Scl. Technol. B 10, 1874(1992)
    44. F. H. Pollak and H. Shen, J. Cryst. Growth 98, 53(1989)
    45. Yichun Yin, D. Yan, Fred H. Pollak, G. D. Pettit and J. M. Woodall, Phys. Rev. B43, 12138(1991)
    46. S. L. Tyan, M. L. Lee, Y. C. Wang, W. Y. Chou, and J. S. Hwang, J. Vac. Scl. Technol. B13, 1010(1995)
    47. H. Shen, W. Zhou, J. Pamulapati and F. Ren, Appl. Phys. Lett. 74, 1430(1999)
    48. J. S. Hwang, J. Y. Lee, T. S. Wang, S. H. Hsu, and J. S. Hwang, Appl. Phys. Lett. 86, 211914(2005)

    下載圖示 校內:2006-07-11公開
    校外:2006-07-11公開
    QR CODE