| 研究生: |
李志偉 Li, Chi-Wei |
|---|---|
| 論文名稱: |
方形容器內奈米流體自然對流熱傳現象之數值模擬研究 Numerical Simulation of Natural Convection Heat Transfer in a Square Enclosure Filled with Nanofluids |
| 指導教授: |
何清政
Ho, Ching-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 方形封閉容器 、自然對流熱傳遞 、奈米流體 、顆粒微流動效應 |
| 外文關鍵詞: | Natural convection, Nanofluids, Square enclosure, Particle micro-convection |
| 相關次數: | 點閱:130 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文首先針對矩型封閉容器內二維奈米流體自然對流熱傳遞現象,建構其熱質傳遞數學模式。矩型容器之左右直立壁分別為高低溫之等溫面,而上下水平壁皆為絕熱面。本文模式主要考慮(一)奈米微粒與基底流體間相對速度效應;(二)奈米流體熱傳導係數隨奈米微粒濃度、顆粒微流動及流體溫度變化效應;及(三)流動剪應力導致懸浮奈米微粒遷徙現象等。利用所建構理論模式,本文以有限體積數值方法,針對方型容器內奈米微粒均勻分佈之奈米流體穩態自然對流熱傳遞現象進行數值模擬研究;所探討之無因次參數及其範圍分別為:萊利數,RaT,f = 103 ~ 106;普朗特數,Prf = 6.06;奈米微粒體積濃度,cv,i = 0.01、1、4%。數值模擬結果顯示,奈米流體之壁面平均熱傳係數均較基底流體(純水)者為高,且隨微粒濃度增加愈見顯著。另外,本文依先前研究(林建中(2004))所探討實驗條件,進行其模擬分析並發現,當方型容器熱傳壁面間溫差為2K、4K條件下,且奈米流體微粒濃度為cv,i = 0.01%或0.35%時,所預測平均紐賽數值與實驗數據頗為吻合。
In the present study heat and mass transport phenomena associated with two-dimensional natural convection in a rectangular enclosure filled with nanofluids is modeled. The enclosure is differentially heated by two isothermal vertical walls, while the remaining walls are kept adiabatic. A mixture continuum approach was adopted in modeling the problem considered, taking into account the following effects:(a)the relative velocity between the dispersed nanoparticles and the suspending base fluid; (b)the mechanisms and factors inducing thermal conductivity enhancement such as particle concentration, temperature, and micro-convection around the dispersed particles; and(c)the shear-induced particle migration in the nanofluid. Numerical simulations have then been undertaken for steady-state natural convection heat transfer in a square enclosure filled with nanofluid of homogeneous distributed nanoparticles with the relevant dimensionless parameters in the following ranges: the Rayleigh number, RaT,f = 103 ~ 106; the Prandtl number, Prf = 6.06; the volumetric fraction of the nanoparticles, cv,i = 0.01, 1, 4%. In the presence of significantly higher thermal conductivity due to the dispersed nanoparticles, numerical results clearly show that the average heat transfer rate across the enclosure filled with nanofluid can be markedly higher than that with the pure base fluid, depending on the volumetric fraction. Moreover, efforts were taken to perform corresponding simulations to the experiments conducted in the previous study (Lin, 2004). Fairly good agreement was found between the predicted and measured results for the averaged Nusselt number of the nanofluid of lower particle fractions cv,i = 0.01% and 0.35% in a square enclosure differentially heated with a temperature difference of 2 or 4 K.
Buongiorno, J., 2006, “Convective Transport in Nanofluids,” J. Heat Transfer, Vol. 128, pp. 240-250.
Charunyakorn, P., Sengupta, S., Roy, S. K., 1991, “Forced Convection Heat Transfer in Microencapsulated Phase Change Material Slurries: Flow in Circular Ducts,” Int. J. Heat Mass Transfer, Vol. 34, No. 3, pp. 819-833.
Choi, S. U. S., 1995, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” ASME, FED-Vol. 231/MD-Vol. 66, pp. 99-105.
Das, S. K., Putra, N., Thiesen, P., Roetzel, W., 2003, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” ASME J. Heat Transfer, Vol. 125, pp. 567-574.
Ding, Y., Wen, D., 2005, “Particle Migration in a Flow of Nanoparticle Suspensions,” Powder Technol., Vol. 149, pp.84-92.
Harhira, M., Roy, S. K., Sengupta, S., 1996, “Natural Convection Heat Transfer from a Vertical Flat Plat with Phase Change Material Suspensions,” Enhanced Heat Transfer, Vol. 4, pp.17-34.
Ho, C. J., 2005, “A Continuum Model for Transport Phenomena in Convective Flow of Solid-Liquid Phase Change Material Suspensions,” Applied Mathematical Modelling, Vol. 29, pp. 805-817.
Khanafer, K., Vafai, K., Lightstone, M., 2003, “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” Int. J. Heat Mass Transfer, Vol. 46, pp. 3639-3653.
Kumar, D. H., Patel, H. E., Kumar, V. R. R., Sundararajan, T., Pradeep, T., Das, S. K., 2004, “Model for Heat Conduction in Nanofluids,” Physical Review Letters, Vol. 93, pp.144301 - 144301-4.
Liu, S., 1999, “Particle Dispersion for Suspension Flow,” Chem. Eng. Sci., 54, pp. 873-891.
Maxwell, J. C., 1904, Electricity and Magnetism, Part II, 3rd ed., Clarendon, Oxford, p. 440.
Maïga, S. E. B., Nguyen, C. T., Galanis, N., Roy, G., 2004, “Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube,” Superlattices Microstruct., Vol. 35, pp. 543-557.
Phillips, R. J., Armstrong, R. C., Brown, R. A., 1992, “A Constitutive Equation for Concentrated Suspensions that Accounts for Shear-Induced Particle Migration,” Phys. Fluids A, Vol. 4, No.1, pp.30-40.
Prasher, R., Bhattacharya, P., Phelan, P. E., 2006, “Brownian-Motion-Based Convection-Conductive Model for the Effective Thermal Conductivity of Nanofluids,” J. Heat Transfer, Vol. 128, pp. 588-595.
Putra, N., Roetzel, W., Das, S. K., 2003, “Natural Convection of Nano-Fluids,” Heat and Mass Transfer, Vol. 39 , pp. 775-784.
Tannehill, J. C., Anderson, D. A., Pletcher, R. H., 1978, Computation Fluid Mechanics and Heat Transfer, Taylor and Francis.
Valverde, J. M. and Castellanos, A., 2006, “Fluidization of Nanoparticles: a Modified Richardson-Zaki Law,” AIChE Journal, Vol, 52, No. 2, pp.838-842.
Wang, X., Xu, X., Choi, S. U. S, 1999, “Thermal Conductivity of Nanoparticle-Fluid Mixture,” J. Thermophys. Heat Transfer, Vol. 13, No. 4, pp. 474-480.
Wen, D., Ding, Y., 2005, “Formulation of Nanofluids for Convective Heat Transfer Applications,” Int. J. Heat and Fluid Flow, Vol. 26, pp. 855-864.
Xuan, Y., Li, Q., Hu, W., 2003, “Aggregation Structure and Thermal Conductivity of Nanofluids,” AIChE Journal, Vol. 49, No. 4, pp.1038-1043.
夏志豪, “矩形容器內含懸浮相變化微粒之自然對流熱傳之數值模擬,” 國立成功大學機械工程研究所碩士論文, 2000.
張純, “水平矩形容器內含相變化微粒懸浮液體自然對流熱傳特性之探討,” 國立成功大學機械工程研究所碩士論文, 2002.
林建中, “矩形容器內奈米流體之自然對流熱傳現象之研究,” 國立成功大學機械工程研究所碩士論文, 2004.
張裕昇, “方形容器內奈米流體之自然對流熱傳現象之實驗研究,” 國立成功大學機械工程研究所碩士論文, 2006.