| 研究生: |
林建豐 Lin, Jian-Feng |
|---|---|
| 論文名稱: |
以分子動力學研究快速固化之再結晶過程 The Study of Recrystallzation During Rapid Solidification Using Molecular Dynamics Method |
| 指導教授: |
黃吉川
Hwang, Chi-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 分子動力學,快速固化,再結晶,晶體連續生長 |
| 外文關鍵詞: | Molecular Dynamics, Rapid solidification, Recrystallization, Continuous crystal growth. |
| 相關次數: | 點閱:189 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以分子動力學(Molecular Dynamics,MD)理論作為基礎,採用氬純元素系統模型與Lennard-Jones 勢能,來進行非晶固體再結晶機制之研究。本文設定一個快速固化環境,與面心立方結構之晶種基版在不同的基版溫度條件下,觀察模擬系統其再結晶過程中模型的溫度分佈變化曲線、再結晶曲面之表面形貌變化(粗糙度)、再結晶曲面移動高度與晶種基版溫度之間的關係,並標定出三維系統之結晶態與非晶態區交界面層狀區域與其厚度之變化情況,此三維系統層狀區域之研究方法與結果有別於前人之研究,以往多採取將三維模型系統中非晶態區與結晶態區之交界面視為二維界面來簡化模型,或是僅設定二維模型系統進行交界區域之界定等研究議題。本文以三維空間的方式定義此結晶態與非晶態交界區域,並藉由動態觀察此區之移動與再結晶連續生長過程,可以得知再結晶之溫度差異越小,再結晶速率越慢,再結晶交界層厚度越
大,再結晶曲面之粗糙度越大。
In this paper, the mechanism of amorphous solid recrystallization has been carried out sing molecular dynamics (MD) simulations. The imulated model is filled with Argon atoms and the Lennard-Jones potential is employed to calculate the nteractions between Argon atoms. Based on the conditions of the specific rapid solidification and F.C.C. crystal substrate under the different temperature, we have examined some significant data, such as temperature variation as a function of time,recrystallization velocity, recrystallization surface's roughness, recrystallization surface moving velocity, radial distribution function (RDF) of crystal zone, amorphous zone and coexisting zone. Besides, the thickness of crystal and amorphous coexisting one and it’s variation are also defined. This result is compared to previous reports which mostly the coexisting surface is defined a plane surface in simulated system. Finally, the moving of ecrystallization surface and the continuous recrystallization growth have been observed, the results shown that the decreasing of the ecrystallization temperature led to the slow velocity of recrystallization, meanwhile, the thickness of crystal and amorphous coexisting zone, and the roughness of recrystallization surface are decreasing.
1. Galenko PK, Kharanzhevskii EV, Danilov DA, “Fast crystallization of structural steel during laser processing of the surface ”, TECHNICAL PHYSICS, 47 (5): 561-568, 2002
2. YU,QM; CLANCY, P,“MOLECULAR-DYNAMICS SIMULATION OF CRYSTAL-GROWTH IN SI1-XGEX/SI(100) HETEROSTRUCTURES”, JOURNAL OF CRYSTAL GROWTH, 149 (1-2): 45-58 APR, 1995
3. GREMAUD M, CARRARD M, KURZ W, ”THE MICROSTRUCTURE OF RAPIDLY SOLIDIFIED AL-FE ALLOYS SUBJECTED TO LASER SURFACE-TREATMENT “, ACTA METALLURGICA ET MATERIALIA, 38 (12): 2587-2599 DEC , 1990.
4. W.J. Boettinger, J.H. Perepezko, in: S. Das, B.H. Kear, C.M. Adam (Eds.), Rapid Solidified Crystalline Alloys, Proc. TMS-AIME Northeast Regional Metting, Morriston, NJ, 1985, p. 21.
5. W.J. Boettinger, S.R. Coriell, in: P.R. Sahm, H. Jones, C.M. Adam (Eds.), Rapid Solidification Materials and Technologies, Nijho§, Dordrecht, 1986, P81
6. W. J. Boettinger, D. Shechtman, R. J. Schaefer, and F. S. Biancaniello, "The Effect of Solidification Velocity on the Microstructure of Ag-Cu Alloys", Materials Transactions 15A : 55-66, 1984
7. W. Oldfield, Transactions of The Metallurgical Society of AIME. 59 : 945, 1966
8. Stefanescu, D. M. and S. Trufinescu, “Crystallization kineticsof gray iron.”, Zeitshuft fur Metallkunde: 65, 610-615, 1974
9. H. Fredikisson and I. L.Sevensson, ”The Physical Metallurgy of Cast Iron,” ed by H. Fredikisson and M. Hillert, Northholland, New York,USA, 1984, P273
10. D. M. Stefanescu and C. kanetkar, “Computer modeling of the solidification of eutectic alloys, the case of cast iron in computer simulation of microstructural evolution”, D. J. Srolovitz, ed. The metallurgical society , Warrendale, 1985, P171
11. K. C. Su, I. OHnaka , I. Yaunauchi and T. Fukusko, “Computer simulation of solidification of nodular cast iron, in the physical metallurgy of cast iron”, H. Fredriksson and M. Hillert,ed., North Holland ,New York , 1984, P181
12. Zhou, GR; Gao, QM, “Molecular dynamics simulation of the solidification of liquid gold nanowires”, MATERIALS TRANSACTIONS, 46 (12): 2830-2837, 2005
13. Qi, L; Zhang, HF; Hu, ZQ,” Molecular dynamic simulation of glass formation in binary liquid metal: Cu-Ag using EAM”, INTERMETALLICS, 12 (10-11): 1191-1195, 2004
14. Cong, HR; Bian, XF; Zhang, JX; Li, H, “Structure properties of Cu-Ni alloys at the rapid cooling rate using embedded-atom method”, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 326 (2): 343-347, 2002
15. Li, GX; Liang, YF; Zhu, ZG; Liu, CS, “Microstructural analysis of the radial distribution function for liquid and amorphous Al”, JOURNAL OF PHYSICS-CONDENSED MATTER, 15 (14): 2259-2267, 2003
16. Wang, LH; Liu, HZ; Chen, KY; Hu, ZQ, “The local orientational orders and structures of liquid and amorphous metals Au and Ni during rapid solidification”, PHYSICA B, 239 (3-4): 267-273, AUG 1997
17. Zhang, H; Wang, XY; Zheng, LL; Sampath, S, “Numerical simulation of nucleation, solidification, and microstructure formation in thermal spraying”, INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 47 (10-11): 2191-2203, 2004
18. Suzuki, T; Ode, M; Kim, SG; Kim, WT, “Phase-field model of dendritic growth”, JOURNAL OF CRYSTAL GROWTH, 237: 125-131 Part 1, 2002
19. Boettinger, WJ; Warren, JA, ” The phase-field method: Simulation of alloy dendritic solidification during recalescence”, METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 27 (3): 657-669,1996
20. J.Q Broughton, G.H. Gilmer, “Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems”, The Journal of Chemical Physics, 84: 5759,1986
21. J.J. Hoyt, M. Asta, A. Karma, ” Method for Computing the Anisotropy of the Solid-Liquid Interfacial Free Energy”, Physical Review Letter, 86: 5530, 2001
22. R. Agrawal and D. A. Kofke, “Thermodynamic and structural properties of model systems at solid-fluid coexistence II. Melting and sublimation of the Lennard-Jones system”, Molecular Physics. 85: 43, 1995!
23. J.-P. Hansen and L. Verlet, “Phase Transitions of the Lennard-Jones System”, Physical Review. 184: 151, 1969
24. J.-P. Hansen, ”Phase Transition of the Lennard-Jones System. II. High-Temperature Limit”, Physical Review A, 2: 221, 1970
25. S. Nose´ and F. Yonezawa, “Isothermal–isobaric computer simulations of melting and crystallization of a Lennard-Jones system”, The Journal of Chemical Physics. 84: 1803, 1986
26. L. Verlet, ” Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions”, Physical Review. 165: 201, 1968
27. J. R. Morris and X. Song, “The melting lines of model systems calculated from coexistence simulations”, The Journal of Chemical Physics. 116: 9352, 2002
28. Z. H. Jin, P. Gumbsch, K. Lu, and E. Ma, “Melting Mechanisms at the Limit of Superheating”, Physical Review Letter. 87: 055703, 2001
29. Kengo Nishio, Junichiro Koga, Toshio Yamaguchi , Fumiko Yonezawa, “Molecular dynamics study on freezing of Lennard-Jones argon in an open-ended cylindrical pore”, Journal of Non-Crystalline Solids, 345&346: 694-697, 2004
30. Kengo Nishio, Junichiro Koga, “Freezing of a Lennard-Jones system in an open-ended and finite-length nanopore: A molecular-dynamics study”, PHYSICAL REVIEW B, 69: 214201, 2004
31. Shigeo MARUYAMA, Tatsuto KIMURA, “A Study on Thermal Resistance over a Solid-Liquid Interface by the Molecular Dynamics Method”, Thermal Science & Engineering, 7 No 1 , 1999
32. Lee SC, Hwang CC, Hsieh JY, Lee KY, “Morphological instabilities in rapid directional solidifications under local nonequilibrium conditions”, JOURNAL OF CRYSTAL GROWTH, 200 (1-2): 305-320, 1999
33. Franck Celestini* and Jean-Marc Debierre, “Nonequilibrium molecular dynamics simulation of rapid directional solidification”, PHYSICAL REVIEW B, 62: 14006, 2000
34. Atsushi Mori,” Hydrothermodynamic consideration on the steady-state motion of a solid/liquid interface”, JOURNAL OF CHEMICAL PHYSICS, 110: 8679, 1999
35. Atsushi Mori, “Effect of Mass Flow in Melt on the Motion of the Crystal-Melt Interface of Hard Spheres: A Molecular Dynamics Study”, Journal of the Physical Society of Japan, 66 No. 6: 1579-1582, 1997
36. A. Mori, F. Shirazawa, N. Inoue, “Non-Equilibrium Molecular Dynamics Simulation of a Crystal-Melt Interface”, Russian Journal of Physical Chemistry, 78: S176-S181, 2003
37. J. M. Haile, “Molecular Dynamics Simulation”, John Wiley&Sons, Inc., 1992
38. J. Haile, “Molecular Dynamics Simulation: Elementary Methods”, John Wiley & Sons, Inc., New York, 1997
39. D. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London, 1997
40. J. Goodfellow et al., “Molecular dynamics”, CRC Press, Boston, 1990
41. M. Allen, D. Tildesley, “Computer Simulation of Liquids”, Oxford Science, London, 1991
42. D. Frenkel, B. Smit, “Understanding Molecular Simulation”, Academic Press, San Diego,1996
43. D. Heermann, “Computer Simulation Method”, Springer-Verlag, Berlin, 1990
44. K. Maekawa, A. Itoh, "Friction and tool wear in nano-scalemachining- a molecular dynamics approach," Wear, 188: 115-122, 1995
45. G. Maitland, M. Rigby, E. Smith, and W. Wakeham, “Intermolecular Forces”, Oxford University Press, London 1987
46. S. Erkoc, “Annual Reviews of Computational IX”, World Scientific Publishing Company, Singapore, 2001
47. R. Smith et al., “Atomic & Ion Collisions in Solids and at Surfaces”, Cambridge University Press, London, 1997
48. M. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Physical Review B, 46: 2727-2742, 1992
49. S. Foiles, M. Baskes, and M. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Physical Review B, 33: 7983-7991, 1986.
50. M. Daw, S. Foiles, and M. Baskes, “The embedded-atom method: a review of theory and applications,” Materials Science Reports, 9: 251-310, 1993
51. M. Baskes, J. Nelson, and A. Wright, “Semiempirical modified embedded-atom potentials for silicon and germanium”, Physical Review B, 40: 6085-6100, 1989
52. J. Slater, G. Koster, "Simplified LCAO method for periodic potential problem," Physical Review, 94: 1498-1524, 1954
53. C. Kittle, “Introduction to Solid State Physics”, John Wiley & Sons, New York, 1996.
54. L. Colombo, "A source code for tight-binding molecular dynamics simulation," Computational Materials Science, 12: 278-287, 1998
55. J. Tersoff, “New empirical model for the structural properties of silicon”, Physical Review Letter, 56: 632, 1986
56. J. Tersoff, “New empirical approach for the structure and energy of covalent systems”, Physical Review B, 37: 6991, 1988
57. J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties”, Physical Review B, 38, 9902, 1988
58. J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Physical Review B, 39: 5566, 1989