| 研究生: |
黃欽足 Chin-Tzwu, Huang |
|---|---|
| 論文名稱: |
序列聯結產品整合式組裝規劃系統之研發 Development of Integrated Assembly Plan Generation Systems for Combinative Group Products |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 組裝規劃 、關聯矩陣 、排序關係 、產品族群 |
| 外文關鍵詞: | liaison matrix, precedence relationships, product families, assembly sequence plan |
| 相關次數: | 點閱:68 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的重點,在探討群組化產品族群的組裝生產規劃系統與所屬零件的數量、幾何形狀及設備配置變動的高複雜性。其目的在於針對文獻中的方法在實際執行上的一些缺點加以改進,並提出一套較有運算效率、易於檢視與使用電腦化管理的群組化序列聯結產品組裝生產規劃系統,以提供產品生產時組裝規劃基礎資訊的應用。
在研究方法上,本文使用邏輯關聯矩陣(liaison matrix, LM) 建構產品中零件實體接觸連接與功能性質相依的資料庫,及擷取產品組裝時的重要排序關係(precedence relationships, PR),可以利用推論的計算方式產生產品族群的組裝順序規劃集合(assembly sequence plan, ASP)。使用關聯矩陣中零件與零件連接屬性的邏輯化資訊,可以用來分析產品組裝排列關係;其功能相依的邏輯化資訊,可以建構多種類零件之產品組織結構。再利用布林代數規則建構產品組裝時的重要排序關係及製程需要的條件之邏輯化組合。將邏輯關聯矩陣與布林代數排序關係,由電腦程式整合疊代運算,自第一個選取組裝之零件起始,依據邏輯相依的存在關係,循序搜尋具有連接特性之零件並進行系列次組裝的操作,當最後一個零件接合時即完成一個推論的迴路,產生一組合適的組裝規劃集合。經運算後可以篩選出該產品族群於組裝操作時之可行的組裝規劃集合。在本文中提出邏輯的關聯矩陣與布林代數建構排序關係結合的方法,有助於提高合適的產品組織結構與產品最佳化組裝順序的快速產生。
最後,運用本文所發展植基於關聯矩陣與排序關係的組裝順序規劃法(ASP-LMPR)及建立資訊處理的電腦程式於所選用的光感應裝置樣品作系統之實例測試,以功能模組模擬探討及驗證理論模型的正確性及可行性。實際模擬結果,證實本文所提的邏輯化結構與系統化程序的方法,確實提供一個可行且高效率的結構,並可作為產品族群的組裝生產規劃系統之用。又經導入ASP-LMPR方法結構於規則模面的拋光程序規劃系統(mold surfaces data integration, MSDI)為第二個實例進行模擬測試;實際模擬結果,證實本文所提的方法可以推廣應用於解決較複雜的相似工業生產規劃問題。本文的最大貢獻,在於提供一個新的系統化的組裝生產規劃模擬工具與程序,且可以推廣至較多零件與相近似的工業生產規劃問題的處理。
Based on the assembly plans generation of grouped product families complex potential associated with the parts number, geometrical shape and change of the facilities layout are studied. The objective of this research is to propose a new ASP-LMPR method that makes use of a logical liaison matrix (LM) and precedence relationships (PR) of Boolean algebra to establish the framework of the generation system of assembly sequence plan (ASP). The ASP-LMPR is able to analyze the relationships of logic combination, and to determine the feasible (or optimal) assembly plans for the grouped combinative product families. To enhance the rapid identification of the product’s organization suitability and optimal assembly sequence, the liaison matrix and precedence relationships are introduced.
For the sample case that photosensitive illuminate device is represented, the effectiveness of the integrated assembly plan generation are obtained analytically by the computerized generation. The numerical results are presented to illustrate the implementation and the capabilities of the ASP-LMPR. In the case of the mold surfaces data integration (MSDI) for polished process planning, the polished process planning and potential tool- approach directions are systematic and the analysis is computerized. The results show that the logical configurations and systematical procedure of the ASP-LMPR method are examined further by using the logical complex technique of the MSDI associated with the framework of Boolean algebra and liaison matrix. The paper provides a novel systematical assembly plans modeling tool and procedure that can be further extended to accommodate more parts appeared in complicated combinative group products.
1. Bourjault, A., “Contribution à une approach méthodologique de I’assemblage automatisé: Elaboration automatique des séquences opératoires,” Thèse d’état, Université de Franche-Comté, Besancon, France, Nov. 1984.
2. De Fazio, T.L. and Whitney, D.E., “Generation and Consideration of All Assembly Sequences for Assembly System Design,” In Samuel, A.E. (ed.), Engineering Design and Manufacturing Management, Elsevier Science B. V., New York, pp. 71-83, 1989.
3. De Fazio, T.L. and Whitney, D.E., ”Simplified Generation of All Mechanical Assembly Sequences,” IEEE Journal of Robotics and Automation, RA-3 (6), pp.640-658, 1987.
4. Homem de Mello, L.S. and Sanderson, A.C., “Representations of Mechanical Assembly Sequences,” IEEE Transactions on Robotics and Automation, 7(2), pp. 211-227, 1991.
5. Homem de Mello, L.S. and Sanderson, A.C., “A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences,” IEEE Transactions on Robotics and Automation, 7(2), pp. 228-240, 1991.
6. Huang, Y.F. and Lee, C.S.G., “Precedence Knowledge in Feature Mating Operation Assembly Planning,” Proc. of 1989 IEEE Int’l Conf. on Robotics and Automation, pp.216-221, 1989.
7. Homen de Mello, L.S. and Sanderson, A.C., “AND/OR Graph Representation of Assembly Plans,” IEEE Transactions on Robotics and Automation, 6(2), pp. 188-199, 1990.
8. Wilson, R.H. and Rit, J.F., “Maintaining Geometric Dependencies in an Assembly Planner,” Proc. of 1990 IEEE Int’l Conf. on Robotics and Automation, pp.890-895, 1990.
9. Wolter, J.D., “A Combinatorial Analysis of Enumerative Data Structures for Assembly Planning,” Proc. of 1991 IEEE Int’l Conf. on Robotics and Automation, pp.611-618, 1991.
10. Thomas, J.P., Nissanke, N. and Baker, K.D., “Boundary Models for Assembly Knowledge Representation,” IEEE Transactions on Robotics and Automation, 12(2), pp. 302-312, 1996.
11. Thomas, J.P. and Nissanke, N., “Assembly Planning for Boundary Models of Objects,” Proc. of 1997 IEEE Int’l Conf. On Symposium on Assembly and Task Planning, pp.146-151, 1997.
12. Wolter, J.D., “On the Automatic Generation of Assembly Plans,” Proc. of 1989 IEEE Int’l Conf. on Robotics and Automation, pp. 62-68, 1989.
13. Warrts, J.J., Bobeschanscher, N. and Bronsvoort, W.F., “A Semi Automatic Assembly Sequence Planner,” Proc. of 1992 IEEE Int’l Conf. on Robotics and Automation, pp. 2431-2437, 1992.
14. Floriani, L.D. and Nagy, G., “A Graph Model for Face-to-Face Assembly,” Proc. of 1989 IEEE Int’l Conf. on Robotics and Automation, pp. 75-78, 1989.
15. Gottipolu, R.B. and Ghosh, K., “Representation and Selection of Assembly Sequences in Computer-aided Assembly Process Planning,” International Journal of Production Research, 35(12), 3447-3465, 1997.
16. Dini, G. and Santochi, M., “Automated Sequencing and Subassembly Detection in Assembly Planning,” Annals CIRP, 41(1), pp. 1-4, 1992.
17. Gottipolu, R.B. and Ghosh, K., “An Integrated Approach to the Generation of Assembly Sequences,” International Journal of Computer Applications in Technology, vol. 8, pp. 125-138, 1995.
18. Zha, X.F., Lim, S.Y.E. and Fok, S.C., “Integrated Knowledge-Based Assembly Sequences Planning,” International Journal of Advanced Manufacturing Technology, 14, pp. 50-64, 1998.
19. Biswas, N.N., Logic Design Theory, Prentice-Hall Publisher, New Jersey, 1993.
20. Sanderson, A.C., Homem de Mello, L.S. and Zhang, H., ”Assembly Sequence Planning,” AI Magazine, 11(1), pp.62-81, 1990.
21. Linn, R.J. and Tu, H.Y., “Automatic Precedence Relationship Extraction for Assembly Sequence Generation,” Journal of Design and Manufacturing, 3, pp. 105-119, 1993.
22. Huang, Y.F. and Lee, C.S.G., “An Automatic Assembly Planning System,” Proc. of 1990 IEEE Int’l Conf. on Robotics and Automation, pp. 1594-1599, 1990.
23. Rajan, V.N. and Nof, S.Y., “Minimal Precedence Constraints for Integrated Assembly and Execution Planning,” IEEE Transactions on Robotics and Automation, 12(2), pp. 175-186, 1996.
24. Hsu, W., Lee, C.S.G. and Su, S.F., “Feedback Evaluation of Assembly Plans,” Proc. of 1992 IEEE Int’l Conf. on Robotics and Automation, pp. 2419-2424, 1992.
25. Laperrière, L. and ElMaraghy, H.A., “Planning of Products Assembly and Disassembly,” Annals of the CIRP, 41(1), pp. 5-9, 1992.
26. Kanai, S., Takahashi, H. and Makino, H., “ASPEN: Computer-Aided Assembly Sequence Planning and Evaluation System Based on Predetermined Time Standard,” Annals of the CIRP, 45(1), pp. 35-39, 1996.
27. Laperrière, L. and ElMaraghy, H.A., “Assembly Sequences Planning for Simultaneous Engineering Applications,” International Journal of Advanced Manufacturing Technology”, 9, pp. 231-244, 1994.
28. Marehalli, J. N. and Sturges, R.H., “Practical Passive Assembly: Gripper Design and Assembly Sequence Optimization,” Proceedings of the 1999 ASME Design for Engineering Technical Conferences, Las Vegas, Sep. 12-15, pp. 473-481, 1999.
29. Güngör, A. and Gupta, M., ”Disassembly Sequence Plan Generation using a Branch-and-Bound Algorithm,” International Journal of Production Research, 39(3), pp. 481-509, 2001.
30. Dini, G., Failli, F., Lazerini, B. and Marcelloni, F., “Generation of Optimized Assembly Sequences Using Genetic Algorithms,” Annals CIRP, 48(1), pp. 17-20, 1999.
31. Chen, S.F., and Liao, X.Y., “Stable Assembly Sequence Planning Using A Genetic Algorithm,” Proceedings of the 1999 ASME Design for Engineering Technical Conferences, Las Vegas, Sep. 12-15, pp. 563-569, 1999.
32. Lee, S., “Backward Assembly Planning with Assembly Cost Analysis,” Proc. of 1992 IEEE Int’l Conf. on Robotics and Automation, pp. 2382-2391, 1992.
33. Ben-Arieh, D., “A Methodology for Analysis Operations’ Difficulty,” International Journal of Production Research, 32(8), pp. 1879-1895, 1994.
34. Graves, S.C. and Redfield, C.H., “Equipment Selection and Task Assignment for Multiproduct Assembly System Design,” The International Journal of Flexible Manufacturing Systems, vol. 1, pp. 31-50, 1988.
35. Stadzisz, P.C. and Henrioud, J.M., “Integrated Design of Product Families and Assembly Systems,” Proc. of 1995 IEEE Int’l Conf. on Robotics and Automation, pp. 1290-1295, 1995.
36. He, D.W. and Kusiak, A., “Design of Assembly Systems for Modular Products,” IEEE Transactions on Robotics and Automation, 13(5), pp. 646-655, 1997.
37. Lai, H.Y. and Huang, C.T., “Integrated Assembly Plan Generation System for Grouped Products Families,” International Journal of Production Research, 41(17), pp. 4041-4061, 2003.
38. Lai, H.Y. and Huang, C.T., “A Systematic Approach for Automatic Assembly Sequence Plan Generation,” International Journal of Advanced Manufacturing Technology”, accepted.
39. Lee, S. and Shin, Y.G., “Assembly Planning Based on Subassembly Extraction,” Proc. of 1990 IEEE Int’l Conf. on Robotics and Automation, pp. 1606-1611, 1990.
40. Lee, S. and Shin, Y.G., “Assembly Coplanner: Co-operative Assembly Planner Based On Subassembly Extraction,” Journal of Intelligent Manufacturing, 4, pp. 183-198, 1993.
41. Bley, H., Seel, U. and Günther, K.G., “Solving Technical Problems in Assembly System’s Design,” Annals CIRP, 45(1), pp. 11-15, 1996.
42. Goldwasser, M., Latombe, J.C. and Motwani, R., “Complexity Measures Assembly Sequences,” Proc. of 1996 IEEE Int’l Conf. on Robotics and Automation, pp. 1851-1857, 1996.
43. Lai, H.Y. and Huang, C.T., “A Systematic Approach to Mold Surface Data Integration for Polished Process Planning,” submitted.
44. Karinthi, R.R., “An Algebraic Approach to Feature Interactions,” Ph. D. Thesis, Department of Computer Science, University of Maryland, 1990.