| 研究生: |
林郁喬 Lin, Yu-Chiao |
|---|---|
| 論文名稱: |
以熱碳還原CuO粉末法生長SiO2奈米線之研究 The study of the growth of SiO2 nanowires via carbothermal reduction of CuO powders |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 氧化銅 、二氧化矽 、熱碳還原 、奈米線 |
| 外文關鍵詞: | carbothermal reduction, CuO, SiO2, nanowire |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在探討生長溫度與時間、Ar流量、Ar/O2氣氛中O2流量以及CuO/C粉末中碳含量等因素對於以熱碳還原CuO粉末方法所長SiO2奈米線的影響。在Ar流量100 sccm、溫度1000℃-1100℃以及無催化劑條件下,加熱CuO/C混合粉末可以在Si基板上長出相當數量的SiO2奈米線。在無CuO/C混合粉末的條件下並未觀察到奈米線。當CuO/C粉末中的碳含量增加,除了SiO2奈米線外,還會長出少量的SiC。由實驗結果可以知道,Ar流量至少要在10 sccm以上才會長SiO2奈米線,而且奈米線的直徑隨著流量的增加而變粗,意謂著藉由Ar輔助帶動氣體傳輸幫助成核與成長的方式是生長奈米線的重要機制。反應過程中所產生的CO2和Si基板反應,使得基板上留下許多的凹洞,而奈米線主要就是從凹洞內生長出來的。在Ar氣氛中添加O2會產生出相當多量的CO,進一步抑制奈米線的生長。從實驗結果來看,經由熱碳還原CuO粉末所長的SiO2奈米線主要是遵從VS生長機制成長。
The growth of SiO2 nanowires(SiONWs)via carbothermal reduction of CuO powders as functions of the growth temperature, time, Ar flow rate, the carbon concentration in the CuO/carbon powders, and the oxygen concentration in the Ar/O2 flow were studied. Significant amount of SiONWs were grown on the Si substrate without the catalyst from the CuO/carbon powders at a temperature of 1000℃-1100℃ in a flowing Ar with the flow rate of 100 sccm. Without using CuO/carbon powders SiONWs could not be readily grown. A small amount of SiC associated with SiONWs was grown from the CuO/carbon powders with a higher proportion of carbon. The minimum Ar flow rate required for the growth of SiONWs was about 10 sccm and the amount as well as the diameter of SiONWs increased with increment of the Ar flow rate, revealing that the vapor transport assisted by the Ar flow is an important mechanism for the nucleation and growth of SiONWs. The growth of SiONWs mainly originated in the cracks which were formed in the Si substrate due to the generation of SiO(g) from the reaction between CO2 and the Si substrate. The introduction of O2 into the Ar flow could generate siginficant amount of CO and thereby suppress the growth of SiONWs. The present studies reveal that the growth of SiONWs via carbothermal reduction of CuO powders mainly follows the vapor-solid(VS)mechanism.
1. R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
2. 馬振基, “奈米材料科技原理與應用”, 全華科技 (2003)
3. B.Z. Zhan, M.A. White, T.K. Sham, J.A. Pincock, R.J. Doucet, K.V.R. Rao, K.N. Robertson, and T.S. Cameron, J. Am. Chem. Soc. 125, 2195 (2003)
4. 張立德, “奈米材料”, 五南出版社 (2002)
5. W. Barthlott and C. Neinhuis, Planta 202, 1 (1997)
6. C. Neinhuis and W. Barthlott, Ann. Bot. 79, 667 (1997)
7. R. Kubo, J. Phys. Soc. Jpn.17, 975 (1962)
8. R. Eisberg and R. Resnick, “Quantum Physics of atoms, molecules, solids, nuclei, and particles”, 2nd ed., New York:Wiley, pp.199 (1985)
9. 陳貴賢, 吳季珍, “物理雙月刊”, 23, 609 (2001)
10. S. Iijima, Nature 354, 56 (1991)
11. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269, 966 (1995)
12. M. Terrones, W.K. Hsu, H. Terrones, J.P. Zhang, S. Romas, J.P. Hare, R. Castillo, K. Prassides, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton, Chem. Phys. Lett. 259, 568 (1996)
13. K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, Appl. Phys. Lett. 69, 386 (1996)
14. D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J.M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996)
15. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
16. W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997)
17. Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, C.C. Xiong, and S.Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
18. H. Dai, E.W. Wang, Y.Z. Lu, S.S. Fang, and C.M. Lieber, Nature 375, 769 (1995)
19. L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, Nature 408, 50 (2000)
20. Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
21. Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
22. Y. Saito, S. Uemura, Carbon 38, 169 (2000)
23. M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, H. Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
24. S.M. Lee, K.S. Park, Y.C. Chai, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, Y.H. Lee, Synth. Met. 113, 209 (2000)
25. R.T. Yang, Carbon 38, 623 (2000)
26. J. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)
27. C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
28. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384, 147 (1996)
29. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, and J.M. Kim, Appl. Phys. Lett. 75, 3129 (1999)
30. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L Cheung, and C.M. Lieber, Science 289, 94 (2000)
31. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000)
32. J. Kong, M.G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001)
33. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)
34. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)
35. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293, 1289 (2001)
36. A.M. Morales and C.M. Lieber, Science 279, 208 (1998)
37. Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, and S.T. Lee, Appl. Phys. Lett. 72, 1835 (1998)
38. D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, H.T. Zhou, and S.Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
39. N. Wang, Y.F. Zhang, Y.H. Tang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 73, 3902 (1998)
40. S.T. Lee, N. Wang, Y.F. Zhang, and Y.H. Tang, MRS Bull. 24, 36 (1999)
41. N.M. Hwang, W.S. Cheong, D.Y. Yoon, and D.Y. Kim, J. Cryst. Growth 218, 33 (2000)
42. J.L. Gole and J.D. Stout, W.L. Rauch, and Z.L. Wang, Appl. Phys. Lett. 76, 2346 (2000)
43. N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee, I. Bello, and S.T. Lee, Chem. Phys. Lett. 299, 237 (1999)
44. Y.F. Zhang, Y.H. Tang, C. Lam, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, J. Cryst. Growth 212, 115 (2000)
45. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Science 299, 1874 (2003)
46. D.P. Yu, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, H.Z. Zhang, Y. Ding, G.C. Xiong, L.P. You, J. Xu, and S.Q. Feng, Phys. Rev. B 59, R2498 (1999)
47. L.S. Liao, X.M. Bao, X.Q. Zheng, N.S. Li, and N.B. Min, Appl. Phys. Lett. 68, 850 (1996)
48. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohiki, K. Nagasawa, and Y. Hama, Phys. Rev. B 45, 586 (1992)
49. 卓恩宗等人, 奈米通訊 11, 5 (2004)
50. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
51. Y.Q. Zhu, W.B. Hu, W.K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
52. A.P. Alivisatos, Science 271, 933 (1996)
53. F. Marlow, M.D. M McGehee, D. Zhao, B.F. Chmelka, and G.D. Stucky, Adv. Mater. 11, 632 (1999)
54. J. Hu, Y. Jiang, X. Meng, C.S. Lee, and S.T. Lee, Small 1, 429 (2005)
55. K.S. Wenger, D. Cornu, F. Chassagneux, T. Epicier, and P. Miele, J. Mater. Chem. 13, 3058 (2003)
56. C.H. Liang, L.D. Zhang, G.W. Meng, Y.W. Wang, and Z.Q. Chu, J. Non-Cryst. Solids 277, 63 (2000)
57. Y.J. Chen, J.B. Li, and J.H. Dai, Chem. Phys. Lett. 344, 450 (2001)
58. Y.Q. Zhu, W.K. Hsu, M. Terrones, N. Grobert, H. Terrones, J.P. Hare, H.W. Kroto, and D.R.M. Walton, J. Mater. Chem. 8, 1859 (1998)
59. H.F. Zhang, C.M. Wang, E.C. Buck, and L.S. Wang, Nano Lett. 3, 577 (2003)
60. C. Ye, L. Zhang, X. Fang, Y. Wang, P. Yan, and J. Zhao, Adv. Mater. 16, 1019 (2004)
61. X.S. Peng, X.F. Wang, J. Zhang, Y.W. Wang, S.H. Sun, G.W. Meng, and L.D. Zhang, Appl. Phys. A 74, 831 (2002)
62. T. Guo﹐P. Nikolaev﹐A. Thess﹐D.T. Colbert﹐R.E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
63. J. Niu, J. Sha, N. Zhang, Y. Ji, X. Ma, and D. Yang, Physica E 23, 1 (2004)
64. Z.Q. Liu, S.S. Xie, L.F. Sun, D.S. Tang, W.Y. Zhou, C.Y. Wang, W. Liu, Y.B. Li, X.P. Zou, and G. Wang, J. Mater. Res. 16, 683 (2001)
65. J.C. Wang, C.Z. Zhan, and F.G. Li, Solid State Commun. 125, 629 (2003)
66. B. Zheng, Y. Wu, P. Yang, and J. Liu, Adv. Mater. 14, 122 (2002)
67. Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 1947 (2001)
68. B.D. Yao, Y.F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
69. Y.B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
70. S.H. Sun, G.W. Meng, M.G. Zhang, Y.T. Tian, T. Xie, and L.D. Zhang, Solid State Commun. 128, 287 (2003)
71. S.H. Sun, G.W. Meng, M.G. Zhang, Y.F. Hao, X.R. Zhang, and L.D. Zhang, J. Phys. Chem. B 107, 13029 (2003)
72. S.H. Sun, G.W. Meng, T. Gao, M.G. Zhang, Y.T. Tian, X.S. Peng, Y.X. Jin, and L.D. Zhang, Appl. Phys. A 76, 999 (2003)
73. Y.W. Wang, C.H. Liang, G.W. Meng, X.S. Peng, and L.D. Zhang, J. Mater. Chem. 12, 651 (2002)
74. Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, J. Cryst. Growth 233, 803 (2001)
75. Z.W. Pan, Z.R. Dai, C. Ma, and Z.L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
76. R. Ma and Y. Bando, Chem. Phys. Lett. 377, 177 (2003)
77. H. Takikawa, M. Yatsuki, and T. Sakakibara, Jpn. J. Appl. Phys. 38, L401 (1999)
78. G. Gundiah, F.L. Deepak, A. Govindaraj, and C.N.R. Rao, Top. Catal. 24, 137 (2003)
79. X.C. Wu, J.M. Hong, Z.J. Han, and Y.R. Tao, Chem. Phys. Lett. 373, 28 (2003)
80. C.Y. Chen, C.I. Lin, and S.H. Chen, Br. Ceram. Trans. 99, 57 (2000)
81. J.P. Murray, A. Steinfeld, and E.A. Fletcher, Energy 20, 695 (1995)
82. M. Johnsson, Solid State Ionics 172, 365 (2004)
83. C.N.R. Rao, G. Gundiah, F.L. Deepak, A. Govindaraj, and A.K. Cheetham, J. Mater. Chem. 14, 440 (2004)
84. A. Alizadeh, E.T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
85. S.H. Li, X.F. Zhu, Y.P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
86. S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
87. F.L. Deepak, G. Gundiah, M.M. Seikh, A. Govindaraj, and C.N.R. Rao, J. Mater. Res. 19, 2216 (2004)
88. X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, and J.J. Du, Chem. Phys. Lett. 336, 53 (2001)
89. Y. Xu, C. Cao, B. Zhang, and H. Zhu, Chem. Lett. 34, 414 (2005)
90. M. Zhang, Y. Bando, and K. Wada, J. Mater. Res. 15, 387 (2000)
91. N.I. Kovtyukhova, T.E. Mallouk, and T.S. Mayer, Adv. Mater. 15, 780 (2003)
92. M. Zhang, Y. Bando, K. Wada, and K. Kurashima, J. Mater. Sci. Lett. 18, 1911 (1999)
93. G.S. Wu, T. Xie, X.Y. Yuan, Y. Li, L. Yang, Y.H. Xiao, and L.D. Zhang, Solid State Commun. 134, 485 (2005)
94. Y.F. Mei, G.G. Siu, Y. Yang, R.K.Y. Fu, T.F. Hung, P.K. Chu, and X.L. Wu, Acta Mater. 52, 5051 (2004)
95. J. Oh, Y. Tak, and J. Lee, Electrochem. Solid-State Lett. 7, C27 (2004)
96. E.J. Bae, W.B. Choi, K.S. Jeong, J.U. Chu, G.S. Park, S. Song, and I.K. Yoo, Adv. Mater. 14, 277 (2002)
97. H. Kang, S. Lee, and H. Lee, J. Vac. Sci. Technol. B 23, 563 (2005)
98. B.C. Satishkumar, A. Govindaraj, E.M. Vogl, L. Basumallick, and C.N.R. Rao, J. Mater. Res. 12, 604 (1997)
99. A. Govindaraj, B.C. Satishkumar, M.N. Nath, and C.N.R. Rao, Chem. Mater. 12, 202 (2000)
100. B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, and D. Zhao, Adv. Mater. 15, 1370 (2003)
101. T.A. Crowley, K.H. Ziegler, D.M. Lyons, D. Erts, H. Olin, M.A. Morris, and J.D. Holmes, Chem. Mater. 15, 3518 (2003)
102. Y. Wu, T. Livneh, Y.X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
103. K.M. Ryan, D. Erts, H. Olin, M.A. Morris, and J.D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
104. N.R.B. Coleman, K.M. Ryan, T.R. Spalding, J.D. Holmes, and M.A. Morris, Chem. Phys. Lett. 343, 1 (2001)
105. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
106. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
107. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, and P. Yang, J. Am. Chem. Soc. 125, 5254 (2003)
108. G. Tourillon, L. Pontonnier, J.P. Levy, and V. Langlais, Electrochem. Solid-State Lett. 3, 20 (2000)
109. 傅耀賢, “新穎奈米線棒低溫合成技術”, 化工資訊與商情, 第2期 (2003)
110. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
111. A. Govindaraj, F.L. Deepak, N.A. Gunari, C.N.R. Rao, Israel J. Chem. 41, 23 (2001)
112. X.L. Li, J.F. Liu, and Y.D. Li, Inorg. Chem. 42, 921 (2003)
113. X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, and Y. Qian, Chem. Mater. 13, 1213 (2001)
114. C.N.R. Rao, F.L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
115. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
116. R.S. Wagner and W.C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
117. R.S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
118. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
119. Y.J. Chen, J.B. Li, Y.S. Han, Q.M. Wei, and J.H. Dai, Appl. Phys. A 74, 433 (2002)
120. J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, and D. Golberg, Adv. Mater. 17, 971 (2005)
121. S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, and Y.W. Chung, J. Mater. Res. 14, 4503 (1999)
122. N. Wang, Y.H. Tang, Y.F. Zhang, C.S .Lee, and S.T. Lee, Phys. Rev. B 58, R16024 (1998)
123. T.S. Chu, R.Q. Zhang, and H.F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
124. R.Q. Zhang, Y. Lifshitz, and S.T. Lee, Adv. Mater. 15, 635 (2003)
125. X.M. Meng, J.Q. Hu, Y. Jiang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
126. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, C.M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)
127. G.W. Zhou, H. Li, H.P. Sun, D.P. Yu, Y.Q. Wang, X.J. Huang, L.Q. Chen, and Z. Zhang, Appl. Phys. Lett. 75, 2447 (1999)
128. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Phys. Rev. B 61, 4518 (2000)
129. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 345, 377 (2001)
130. H.Y. Peng, X.T. Zhou, N. Wang, Y.F. Zheng, L.S. Liao, W.S. Shi, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 27, 263 (2000)
131. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Adv. Mater. 13, 591 (2001)
132. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
133. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
134. J.Q. Hu, X.L. Ma, Z.Y. Xie, N.B. Wong, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 344, 97 (2001)
135. Y.H. Tang, N. Wang, Y.F. Zhang, C.S. Lee, I. Bello, and S.T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
136. K.H. Lee, S.W. Lee, R.R. Vanfleet, and W. Sigmund, Chem. Phys. Lett. 376, 498 (2003)
137. L. Dai, X.L. Chen, T. Zhou, and B.Q. Hu, J. Phys.: Condens. Matter 14, L473 (2002)
138. L. Dai, X.L. Chen, J.K. Jian, W.J. Wang, T. Zhou, and B.Q. Hu, Appl. Phys. A 76, 625 (2003)
139. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Science 270, 1791 (1995)
140. X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel, Nano Lett. 3, 93 (2003)
141. H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, and S.Q. Feng, Chem. Phys. Lett. 323, 224 (2000)
142. Y.J. Xing, Z.H. Xi, Z.Q. Xue, and D.P. Yu, Chin. Phys. Lett. 20, 700 (2003)
143. Y.J. Xing, Z.H. Xi, D.P. Yu, Q.L. Hang, H.F. Yan, S.Q. Feng, and Z.Q. Xue, Chin. Phys. Lett. 19, 240 (2002)
144. B.T. Park and K. Yong, Nanotechnology 15, S365 (2004)
145. M. Paulose, O.K. Varghese, and C.A. Grimes, J. Nanosci. Nanotech. 3, 341 (2003)
146. K.H. Lee, H.S. Yang, K.H. Baik, J. Bang, R.R. Vanfleet, and W. Sigmund, Chem. Phys. Lett. 383, 380 (2004)
147. H. Hamamura, H. Itoh, Y. Shimogaki, J. Aoyama, T. Yoshimi, J. Ueda, and H. Komiyama, Thin Solid Films 320, 31 (1998)
148. 汪建民等人, “材料分析”, 中國材料科學學會 (1998)
149. L. Liu, T.J. Zhang, K. Cui, and Y.D. Dong, J. Mater. Res. 14, 4062 (1999)
150. P. Carter, B. Gleeson, and D.J. Young, J. Oxid. Met. 56, 375 (2001)
151. T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, “Binary Alloy Phase Diagrams”, (American Society for Metals, Metals Park, OH) 1, 960 (1986)
152. G.W. Meng, X.S. Peng, Y.W. Wang, C.Z. Wang, X.F. Wang, and L.D. Zhang, Appl. Phys. A 76, 119 (2003)
153. B.E. Deal and A.S. Grove, J. Appl. Phys. 36, 3770 (1965)
154. Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
155. J.Q. Hu, Y. Jiang, X.M. Meng, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 367, 339 (2003)
156. F.C. Frank, Discuss. Faraday Soc. 5, 48 (1949)
157. M. Zheng, L. Zhang, X. Zhang, J. Zhang, and G. Li, Chem. Phys. Lett. 334, 298 (2001)
158. D.C. Bell, Y. Wu, C.J. Barrelet, S. Gradecak, J. Xiang, B.P. Timko, and C.M. Lieber, Microsc. Res. Tech. 64, 373 (2004)