簡易檢索 / 詳目顯示

研究生: 陳浚弘
Chen, Jun-Hong
論文名稱: 螢光分子與單一奈米共振腔的量子強耦合逼近
Approaching Quantum Strong Coupling between Fluorescent Molecules and a Plasmonic Nanoncavity
指導教授: 陳宣燁
Chen, Shiuan-Yeh
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: DNA修飾強耦合現象等離子體結構分子奈米共振腔
外文關鍵詞: DNA modification, strong coupling, plasmonic structures, molecule, nanocavity
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光與物質間的強耦合現象會使得光與物質所構成的系統模態產生分裂,進而導致系統會處於一半光子模態,一半電子模態的現象,而對應到系統散射光譜的量測上會出現兩個峰值,也就是散射光譜峰值分裂的情形。在本研究的第一部分中,設計了一套簡易且快速的DNA修飾製程,將螢光分子侷限於奈米粒子與薄膜所構成的奈米共振腔中(粒子-薄膜共振腔),而形成一耦合結構,並藉由量測此耦合結構的散射光譜,來觀察是否有因分子與共振腔互相耦合後所產生散射光譜峰值分裂的情形。為驗證實驗上觀測到的散射光譜峰值分裂是粒子-薄膜共振腔與螢光分子互相耦合所造成的結果,在實驗上透過比較了粒子-薄膜共振腔中內有無螢光分子之散射光譜量測結果,驗證了散射光譜上觀測到的峰值分裂是粒子-薄膜共振腔與螢光分子互相耦合所造成,且透過掃描電子顯微鏡(Scanning Electron Microscope,SEM)來觀測每一個量測的粒子-薄膜耦合結構是否為單顆粒子組成,去除了散射光譜峰值分裂的情形可能為粒子間互相影響所導致。接下來利用了多層膜修飾粒子-薄膜共振腔的方式來改變共振腔的共振模態,進而改變散射光譜分裂的峰值位置,來觀測耦合結構是否有抗交叉(Anti-crossing)的趨勢。最後藉由著量測耦合結構的螢光光譜來看是否會因粒子-薄膜共振腔與螢光分子互相耦合,所導致在耦合結構的螢光光譜上也觀察到有兩個峰值。而在理論驗證的方面,利用實驗上量測到的粒子-薄膜共振腔散射光譜的線寬、分子吸收光譜的線寬以及耦合結構散射光譜峰值分裂寬度來檢視本研究的是否有符合理論上的強耦合規範。
    為了後續實務上的應用,將強耦合結構定位在特定的位置是一件很重要的工作。故在第二部分的研究利用了DNA序列末端硫鍵會與金鍵結的特性,搭配電子束微影技術(Electron Beam Lithography, EBL)可以將奈米尺度的金圓盤定位於特定位置上的方式,將金奈米粒子與特定位置的奈米金圓盤藉由DNA序列互相結合,來達成將強耦合結構定位的目的。而在實驗上雖然奈米金圓盤實際的尺寸與設計的尺寸約誤差10%,不過也說明了本研究使用的製程方法是可以成功將奈米金圓盤固定在特定的位置上。而粒子-圓盤共振腔與分子間強耦合實驗方面,延續第一部分所設計出的DNA修飾手法,將金奈米粒子藉由DNA序列互補的特性與奈米金圓盤結合,而在散射光譜無法看出共振腔內有無分子的差異,且在利用掃描式電子顯微鏡來側向拍攝粒子-圓盤共振腔結構上僅約略看出粒子接上金奈米圓盤的模樣,無法很確定的說明粒子是有接上金奈米圓盤的,而在散射光譜無法看到一些差異的問題上也有提出一些後續解決的方案。

    Precisely position coupling between light and single molecule at room temperature is one of fundamental goals of building nanophotonic devices. Here we studied scattering spectrum of individual nanoparticle-film structure coupled to molecule, and form the coupling structure between light and matter. Then using the characteristics of thiol bond on DNA will be bond with gold, positioning the nanoparticle-disk structure in a specific area.
    In the experimental results, the splitting can be obtained by comparing the results of scattering spectrum with or without molecules in the nanocavity. Moreover, by SEM observation, the comparison of the laser light before and after the illumination and layer by layer deposition can be more certain that the splitting result is due to the coupling of the molecules and the resonant cavity. But in theoretical calculations, it is approaching the strong coupling regime.
    In the fabrication of the nanoparticle-disk structure, Au nanodisk has been successfully fabricated on the ITO/glass, and the actual diameter and height of Au nanodisk have been confirmed by SEM and AFM, respectively. After DNA functionalization and nanoparticle assembly, we can't see a clear image on the SEM to determine if the particles have successfully assembled on the Au nanodisk. In the results of the scattering spectrum, we cannot distinguish the difference in the scattering spectrum with or without molecules in the cavity. The experimental results and techniques in this aspect should be discussed and reviewed in the future.

    中文摘要 I Abstract II 致謝 XVIII 總目錄 XIX 圖目錄 XXI 表目錄 XXIII 第1章 序論 1 1-1 前言與文獻回顧 1 1-2 動機 9 第2章 研究方法 10 2-1 強耦合現象原理介紹 10 2-2 設備器材與其原理介紹 13 2-2-1 熱蒸鍍製備薄膜 13 2-2-2 原子力顯微鏡 14 2-2-3 掃描式電子顯微 15 2-2-4 電子束微影技術 16 2-3實驗樣品製作方法 18 2-3-1 理論計算修飾奈米粒子與金膜之DNA所需量 18 2-3-2 粒子-薄膜共振腔與分子耦合結構的製作流程 20 2-3-3 粒子-圓盤共振腔與分子耦合結構的製作流程 22 第3章 實驗結果 23 3-1粒子-薄膜共振腔與分子間強耦合現象實驗結果 23 3-1-1 DNA序列修飾對於耦合結構散射光譜影響 23 3-1-2 粒子-薄膜共振腔內有無螢光分子對於耦合結構散射光譜的影響 27 3-1-3 A strand修飾於金膜時間測試 29 3-1-4 AuNP@B5/B與經兩段DNA修飾後的金膜修飾時間對於光譜結果的影響30 3-1-5 DNA修飾的序列對調對於耦合結構散射光譜的影響 40 3-2 粒子-薄膜共振腔與分子強耦合現象驗證 42 3-2-1多層膜修飾耦合結構結果 42 3-2-2螢光光譜量測耦合結構結果 50 3-2-3理論計算 54 3-3粒子-圓盤與分子強耦合現象實驗結果 59 3-3-1奈米金圓盤光學量測結果 59 3-3-2粒子-圓盤共振腔與分子間耦合現象量測結果 61 第4章 結論64 參考文獻 66 附錄A 69

    [1] Zengin, G., Wersäll, M., Nilsson, S., Antosiewicz, T. J., Käll, M., & Shegai, T. (2015). Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Physical Review Letters, 114(15), 157401.
    [2] Zengin, G., Johansson, G., Johansson, P., Antosiewicz, T. J., Käll, M., & Shegai, T. (2013). Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Scientific reports, 3, 3074..
    [3] Chen, X., Chen, Y. H., Qin, J., Zhao, D., Ding, B., Blaikie, R. J., & Qiu, M. (2017). Mode modification of plasmonic gap resonances induced by strong coupling with molecular excitons. Nano letters, 17(5), 3246-3251.
    [4] Schlather, A. E., Large, N., Urban, A. S., Nordlander, P., & Halas, N. J. (2013). Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano letters, 13(7), 3281-3286.
    [5] Reithmaier, J. P., Sęk, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., ... & Forchel, A. (2004). Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432(7014), 197.
    [6] Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H. M., Rupper, G., ... & Deppe, D. G. (2004). Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432(7014), 200.
    [7]Santhosh, K., Bitton, O., Chuntonov, L., & Haran, G. (2016). Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nature communications, 7, ncomms11823.
    [8] Chikkaraddy, R., de Nijs, B., Benz, F., Barrow, S. J., Scherman, O. A., Rosta, E., ... & Baumberg, J. J. (2016). Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535(7610), 127
    [9] Chikkaraddy, R., Turek, V. A., Kongsuwan, N., Benz, F., Carnegie, C., Van De Goor, T., ... & Baumberg, J. J. (2017). Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano letters, 18(1), 405-411
    [10] Lin, Q. Y., Mason, J. A., Li, Z., Zhou, W., O’brien, M. N., Brown, K. A., ... & Aydin, K. (2018). Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science, eaaq0591
    [11] Myers, B. D., Lin, Q. Y., Wu, H., Luijten, E., Mirkin, C. A., & Dravid, V. P. (2016). Size-selective nanoparticle assembly on substrates by dna density patterning. ACS nano, 10(6), 5679-5686.
    [12] Lin, Q. Y., Li, Z., Brown, K. A., O’Brien, M. N., Ross, M. B., Zhou, Y., ... & Aydin, K. (2015). Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano letters, 15(7), 4699-4703.
    [13] Antosiewicz, T. J., Apell, S. P., & Shegai, T. (2014). Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling. Acs Photonics, 1(5), 454-463.
    [14] Wersäll, M., Cuadra, J., Antosiewicz, T. J., Balci, S., & Shegai, T. (2016). Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano letters, 17(1), 551-558
    [15] Stete, F., Koopman, W., & Bargheer, M. (2017). Signatures of strong coupling on nanoparticles: Revealing absorption anticrossing by tuning the dielectric environment. ACS Photonics, 4(7), 1669-1676
    [16] Rousseaux, B., Baranov, D. G., Käll, M., Shegai, T., & Johansson, G. (2018). Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems. Physical Review B, 98(4), 045435.
    [17] Adachi, H., & Wasa, K. (2012). Thin films and nanomaterials. In Handbook of Sputtering Technology (Second Edition) (pp. 3-39).
    [18] Mironov, V. L. (2004). Fundamentals of scanning probe microscopy. The Russian Academy of Sciences.
    [19] Hafner, B. (2007). Scanning electron microscopy primer. Characterization Facility, University of Minnesota-Twin Cities, 1-29
    [20] Stepanova, M., & Dew, S. (Eds.). (2011). Nanofabrication: techniques and principles. Springer Science & Business Media.
    [21] Wiederrecht, G. (2010). Handbook of nanofabrication. Academic Press.
    [22] Demers, L. M., Mirkin, C. A., Mucic, R. C., Reynolds, R. A., Letsinger, R. L., Elghanian, R., & Viswanadham, G. (2000). A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Analytical chemistry, 72(22), 5535-5541.
    [23] Huang, E., Satjapipat, M., Han, S., & Zhou, F. (2001). Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir, 17(4), 1215-1224
    [24] Taton, T. A. (2002). Preparation of gold nanoparticle–DNA conjugates. Current protocols in nucleic acid chemistry, 9(1), 12-2.
    [25] Liu, B., & Liu, J. (2017). Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. Analytical Methods, 9(18), 2633-2643.
    [26] Mock, J. J., Hill, R. T., Degiron, A., Zauscher, S., Chilkoti, A., & Smith, D. R. (2008). Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano letters, 8(8), 2245-2252.
    [27] Chen, S. Y., & Lazarides, A. A. (2009). Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure. The Journal of Physical Chemistry C, 113(28), 12167-12175.
    [28]Lumdee, C., Yun, B., & Kik, P. G. (2014). Gap-plasmon enhanced gold nanoparticle photoluminescence. Acs Photonics, 1(11), 1224-1230.
    [29] Huang, C. Z., Wu, M. J., & Chen, S. Y. (2015). High order gap modes of film-coupled nanospheres. The Journal of Physical Chemistry C, 119(24), 13799-13806.
    [30] Huh, J. H., Lee, J., & Lee, S. (2017). Comparative study of plasmonic resonances between the roundest and randomly faceted Au nanoparticles-on-mirror cavities. ACS Photonics, 5(2), 413-421.
    [31] Benz, F., Schmidt, M. K., Dreismann, A., Chikkaraddy, R., Zhang, Y., Demetriadou, A., ... & Aizpurua, J. (2016). Single-molecule optomechanics in “picocavities”. Science, 354(6313), 726-729.
    [32] Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W., & Scherer, A. (2006). Vacuum Rabi splitting in semiconductors. Nature physics, 2(2), 81.
    [33] Stete, F., Schoßau, P., Bargheer, M., & Koopman, W. (2018). Size-Dependent Coupling of Hybrid Core–Shell Nanorods: Toward Single-Emitter Strong-Coupling. The Journal of Physical Chemistry C, 122(31), 17976-17982
    [34] Thomas, R., Thomas, A., Pullanchery, S., Joseph, L., Somasundaran, S. M., Swathi, R. S., ... & Thomas, K. G. (2018). Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling. ACS nano, 12(1), 402-415.
    [35] Haken, H., & Wolf, H. C. (2013). Molecular physics and elements of quantum chemistry: introduction to experiments and theory. Springer Science & Business Media
    [36] Lakowicz, J. R. (Ed.). (2013). Principles of fluorescence spectroscopy. Springer Science & Business Media
    [37] Madsen, M. J., Brown, D. R., Krutz, S. R., & Milliman, M. J. (2011). Measuring the molecular polarizability of air. American Journal of Physics, 79(4), 428-430
    [38] Weiss, L., Tazibt, A., Tidu, A., & Aillerie, M. (2012). Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa. The Journal of chemical physics, 136(12), 124201

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE