簡易檢索 / 詳目顯示

研究生: 曾建豪
Tseng, Chien-Hao
論文名稱: 破裂面內寬模式之評估
Assessment of Fracture Empirical Models for Estimating Apertures
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 101
中文關鍵詞: 力學內寬當量水力內寬平行板
外文關鍵詞: parallel plate, PHOENICS, equivalent hydraulic aperture, mechanical aperture
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以計算流體力學數值軟體PHOENICS及單一裂隙定水頭試驗,探討節理內寬中不同內寬寬度及粗糙度對水流的影響,數值模式中採用二維變動平行板之物理模型來代表節理內寬空間狀況,進而模擬其水流情形,並與前人提出之內寬評估之各不同經驗模式(Patir and Cheng模式、Zimmerman模式、Sisavath模式以及Liu模式)相比較,提出各模式之適用性。另外,利用機械工業精密量測提出之粗糙度參數(JRC)來計算粗糙狀況,並進行水力內寬試驗以求當量水力內寬值,代入各模式中得到不同力學內寬值,進行不同模式比較。

    結果顯示,力學內寬與節理粗糙標準偏差之比值與導水性之關係可分為三部份,當力學內寬與節理粗糙標準偏差之比值大於8.0時,各模式皆趨近於一平穩值,代表粗糙幾何狀況較平緩,此時利用平行板模式來模擬節理面水流狀況有良好的效果;當力學內寬與節理粗糙標準偏差之比值介於3.0至8.0時,各模式因假設條件及理論不同而有差異,但仍能適切描述此區導水性與力學內寬與節理粗糙標準偏差之關係,可因為需求之不同,而選擇不同模式來解決問題;當力學內寬與節理粗糙標準偏差之比值小於3.0時,各模式差異甚大,無法觀察出此區之導水性情形,因此不建議使用各模式來探討。水力內寬試驗結果顯示,內寬經驗模式可根據考慮規模效應與否,而分為兩大類,即有考慮規模效應與無考慮規模效應,依據解決問題之不同,而使用不同模式來推估。

    The main purpose of this paper is to evaluate the effect of flow in fractures. The numerical simulation (PHOENIS software) is performed under the constant head flow through single aperture experiment at various aperture roughness conditions. The empirical models of apertures (Patir and Cheng model, Zimmerman model, Sisavath model, and Liu model) are presented in order to compare the variation and to describe suitable conditions from different models. In addition, this study adopts the parameter of roughness from precise measurement of mechanical industry. The equivalent hydraulic apertures can be calculated from the results of experiment, and then we can obtain different mechanical apertures by using different models with equivalent hydraulic apertures.

    When 2-D non-constant parallel plate model is used to simulate the flow behavior of space condition of apertures and compared with the empirical models, it indicates that the relationship of the ratio of the mean aperture to its standard deviation and conductivity of fluid flow can be divided into three parts. Firstly, when the ratio is over 8.0, each empirical model becomes gradually stationary, it indicates that the roughness is smooth and we use parallel plate model to simulate the fluid flow in apertures can obtain fine results. Secondly, when the ratio is between 3.0 and 8.0, different models simulate different conditions because each model has different hypothetical conditions and theory basis. It still can describe well the relationship between the conductivity, the mean aperture, and the standard deviation. Finally, when the ratio is lower than the value of 3.0, each model has quite different results, we can not observe the conductivity of fluid flow in this part. Therefore, this study does not provide any suggestions for using each empirical model in third part. In the apertures experiment results indicate that according to scale effect, the empirical models can be divided into two sections. We can use different models to evaluate apertures at different conditions.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究方法 2 1.3 研究架構與流程 3 第二章 文獻回顧 5 2.1 節理內寬特性 5 2.1.1 節理內寬的定義 6 2.1.2 求取節理內寬方法 9 2.1.3 節理內寬參數 10 2.2 節理面粗糙幾何特性 11 2.3 節理渗流分析模式 15 2.4 流量比 26 2.5 綜合分析 26 第三章 理論模式 27 3.1 節理面渗流基本理論 27 3.2 內寬評估經驗模式 30 3.3 各評估模式之比較 35 3.3.1 五種內寬評估經驗模式之比較 35 3.3.2 正弦函數之節理面模式比較 37 3.3.2.1 Sisavath et al.(2003)模式之探討 37 3.3.2.2 Zimmerman et al.(1991)模式與Sisavath et al.(2003)模式之比較 39 3.4 綜合分析 41 第四章 數值模擬 42 4.1 PHOENICS數值軟體 42 4.1.1 PHOENICS之架構 42 4.1.2 PHOENICS之求解方程式 44 4.1.3 鬆弛因子 46 4.1.4 收斂條件 47 4.1.5 源項 47 4.1.6 資料輸入檔介紹 48 4.2 平行板模式 50 4.3 連續平行板模式 58 4.4 平行加連續平行板模式 69 4.5 數值模式與經驗模式之比較 71 4.6 綜合分析 82 第五章 單一裂隙定水頭試驗 83 5.1 當量水力內寬 84 5.2 粗糙度參數 85 5.3 試驗結果 90 5.4 綜合分析 94 第六章 結論與建議 95 6.1 結論 95 6.2 建議 96 參考文獻 97 表目錄 表2.1 Louis(1969) 粗糙節理面滲流之流動律 19 表4.1 平行板數值模擬及解析解結果 52 表4.2 不同內寬之平行板之數值模擬結果 54 表4.3 連續平行板模型之各分段內寬高和長度與數值模擬及楔形模式計算流量之結果 63 表4.4 連續平行板模型之數值模擬、串聯模式及楔形模式計算之水力內寬結果 64 表4.5 平行加連續平行板模型數值模擬與解析解之流量結果 70 表4.6 六種節理內寬模型之物理條件與數值模擬結果 72 表4.7 六種節理內寬物理模型之真實內寬與三種平均內寬之結果 74 表4.8 水力內寬與三種平均力學內寬之比值 74 表4.9 六種節理內寬物理模型之數值模擬、楔形模式及串聯模式計算之水力內寬結果 76 表5.1 各岩心樣本之不同粗糙度參數 90 表5.2 岩心樣本之物理條件和實驗之水力條件及計算之當量水力內寬結果 91 表5.3 不同模式計算岩心樣本之力學內寬結果 92 圖目錄 圖1.1 研究流程圖 4 圖2.1 節理內寬定義示意圖 (Hakami, 1996) 5 圖2.2 節理面視內寬與真實內寬示意圖 6 圖2.3 碎形維度代表節理粗糙幾何特性所衍生之節理面 與內寬分布 (Brown, 1987) 10 圖2.4 十條破裂面粗糙度標準曲線 (Barton et al., 1977) 12 圖2.5 用標度變換法計算粗糙輪廓的維度 14 圖2.6 破裂面內寬示意圖 (趙振宇,1999) 16 圖2.7 慕迪圖 (Moody chart) 17 圖2.8 節理面之主要及次要節瘤粗糙特性示意圖 (Louis, 1969) 18 圖2.9 節理滲流之流動律 (Louis, 1969) 18 圖2.10 滲流速度場分布(dm=2σ) (Brown, 1987) 22 圖2.11 不同修正法計算節理面滲流量之比較 (Brown, 1987) 22 圖2.12 可變內寬流槽模式之示意圖 (Tsang and Tsang, 1989) 24 圖2.13 流槽理論計算模擬節理面之滲流場特性 (Tsang and Tsang, 1989) 25 圖3.1 Patir and Cheng(1978)與Brown(1989)之推估導水性結果比較 31 圖3.2 節理面修正JRC-e導水偶合模式 32 圖3.3 正弦函數之節理面示意圖 33 圖3.4 四種內寬評估模式比較圖 36 圖3.5 節理面修正JRC-e導水偶合模式 (Barton, 1985) 36 圖3.6 振幅與導水性之關係圖 (Sisavath et al., 2003) 38 圖3.7 波長與導水性之關係圖 (Sisavath et al., 2003) 38 圖3.8 波長與導水性之關係圖 Zimmerman et al.(1991)模式與Sisavath et al.(2003)模式 40 圖3.9 振幅與導水性之關係圖 Zimmerman et al.模式(1991)與Sisavath et al.(2003)模式 40 圖4.1 PHOENICS執行之流程圖 43 圖4.2 PHOENICS使用之有限體積模型圖 45 圖4.3 平行板之物理模型 50 圖4.4 平行板中流速情況 53 圖4.5 數值模擬之平行板中之流速圖 53 圖4.6 數值模擬之平行板中之壓力圖 54 圖4.7 流速與內寬值之平方關係圖 56 圖4.8 流量與內寬值之立方關係圖 56 圖4.9 平行板內寬為0.003m之流速圖 57 圖4.10 平行板內寬為0.004m之流速圖 57 圖4.11 平行板內寬為0.005m之流速圖 58 圖4.12 連續平行板模式與真實內寬示意圖 59 圖4.13 連續平行板物理模型示意圖 59 圖4.14 連續平行板之流速圖 62 圖4.15 各進出口處之流速與內寬位置關係圖 62 圖4.16 限制內寬之比值與流量之關係圖 65 圖4.17 限制內寬之比值與水力內寬之關係圖 65 圖4.18 限制內寬為C1/C2=1.0之流速圖 67 圖4.19 限制內寬為C1/C2=0.8之流速圖 67 圖4.20 限制內寬為C1/C2=0.6之流速圖 68 圖4.21 限制內寬為C1/C2=0.4之流速圖 68 圖4.22 節理面有阻礙物之簡化模式示意圖 69 圖4.23 平行加連續平行板模型(案例a)之流速分佈圖 70 圖4.24 平行加連續平行板模型(案例b)之流速分佈圖 71 圖4.25 假設案例之物理模型示意圖 72 圖4.26 三種力學內寬比較圖 75 圖4.27 各模式比較圖(壓力差=40Pa) 76 圖4.28 各模式比較圖(壓力差=20Pa) 78 圖4.29 各模式比較圖(壓力差=10Pa) 78 圖4.30 dm/σ=3.17之流速圖 79 圖4.31 dm/σ=3.87之流速圖 79 圖4.32 dm/σ=4.8之流速圖 80 圖4.33 dm/σ=7.8之流速圖 80 圖4.34 dm/σ=9.76之流速圖 81 圖4.35 dm/σ=17.8之流速圖 81 圖5.1 定水頭試驗儀 83 圖5.2 岩心樣本 83 圖5.3(a) 中心線平均粗糙度 與JRC之關係 87 圖5.3(b) 均方根粗糙度 與JRC之關係 87 圖5.3(c) 最大粗糙高度與 與JRC之關係 88 圖5.3(d) 全粗糙高度 與JRC之關係 88 圖5.3(e) 十點平均粗糙度 與JRC之關係 89 圖5.3(f) 第三最高波峰至波谷平均高度 與JRC之關係 89 圖5.4 數值模擬之迴歸曲線 91 圖5.5 各模式力學內寬與水力內寬之關係圖 93 圖5.6 花崗岩岩心樣本之力學內寬與水力內寬之關係圖 94

    參考文獻

    Ablin, H., Neretnieks, I., Tunbrant, S., and Moreno, L., (1985), “Migration in a Single Fracture: Experimental Results and Evaluation, “ Final Report, Stripa Project, Tech. Repoert 85-03, Stockholm.

    Barton, N., and Choubey, V., (1977), “The Shear Strength of Rock Joints in Theory and Practice,” Rock Mechanics and Rock Engineering, Vol. 10, No.1-2, pp.1-54.

    Barton, N. R., Bandis, S. C., and Bakhtar, K., (1985), “Strength, Deformation and Conductivity Coupling of Rock Joints,” International Journal of Rock Mechanics Sci. and Geomech. Abstr. , Vol. 22, No.3, pp.121-140.

    Bandis, S., A. C. Lumsden and Barton, N. R., (1980), “Experimental Studies of Scale Effects on the Shear Behaviour of Rock Joints,” International Journal of Rock Mechanics Sci. and Geomech. Abstr. , Vol. 18, No.1, pp.1-21.

    Brown, S. R., (1987), “A Note on the Description of Surface Roughness Using Fractal Dimension, ” Geophysical Research Letters, Vol. 14, No.11, pp.1095-1098.

    Carr, J. R., and Warriner, J. B., (1989), “Relationship between the Fractal Dimension and Joint Roughness Coefficient,” Bulletion the Association of Engineering Geologists, Vol. 1151, No.2, pp.253-263.

    Chen, D. W., (1990), “Coupled Stiffness-permeability Analysis of a Single Rough-surfaced Fracture by the Three-dimensional Boundary –element Method,” Ph.D. Thesis, University of California, Berkeley, p.75.

    Hakami, E., (1995), “Characterization of Fracture Aperture-Method and Parameters,” Proceedings of 8th Conference of ISRM, Tokyo, pp.751-754.

    Hakami, E., and Larsson, E., (1996), “Aperture Measurement and Flow Experiments on a Single Natural Fracture,” International Journal of Rock Mechanics Sci. and Geomech. Abstr. , Vol. 33, No.4, pp.395-404.

    Iwai, K., (1976), “Fundamental Studies of Fluid Flow Through a single fracture,” Ph.D. Dissertation, University of California, Berkeley.

    Kosakowski, G., and Berkowitz, B., (1999), “Flow Pattern Variability in Natural Fracture Intersections,” Geophys. Res. Lett., Vol. 26, No.12, pp.1765-1768.

    Louis, C., (1969), “A Study of Groundwater Flow in Jointed Rock and its Influence on The Stability of Rock Masses,” Rock Mechanics Report, Imperial College, 90 pages.

    Liu, Enru., (2005), “Effects of Fracture Aperture and Roughness on Hydraulic and Mechanical Properties of Rocks:Implication of Seismic Characterization of Fractured Reservoirs,” Journal of Geophysics and Engineering, Vol. 2, pp.38-47.

    Lee, Y. H., (1990), “The Fractal Dimension as a Measure of the Roughness of Rock Discontinuity Profiles,” International Journal of Rock Mechanics and Mining Sci. , Vol. 27, No.6, pp.395-404.

    Lee, C. H., and I. W. Fammer, (1993), “Fluid Flow in Discontinuous Rocks,” 1st edn,Chapman and Hall.

    Moreno, L . and Neretnieks, A., (1986), “Contaminant Transport through a Fractured Porous Rock:Impact of the Inlet Boundary Condition on the Concentration Profile in the Rock Matrix,” Water Resource Research, Vol. 22, No.12, pp.1728-1730.

    Neuzil, C. E., and Tracy, J. V., (1981),“Flow Through Fractures,” Water Resources Reserch, Vol. 17, No.1, pp.191-199.

    Olsson, R., and Barton, N., (2001), “An Improved Model for Hydromechanical Coupling During Shearing of Rock Joints,” International Journal of Rock Mechanics and Mining Sci. , Vol. 38, No.3, pp.317-329.

    Priest, S. D., (1993), “Discontinuity Analysis for Rock Engineering,” Chapman and Hall.

    Patir, N., and Cheng, H. S., (1978), “An Average Flow Model for Determining Effects of Three-dimensional Roughness on Partial Hydrodynamic Lubrication,” ASME J. Lubr. Technol. Vol. 100, pp.12-17.

    Renshaw, C. E., (1995), “On the Relationship between Mechanical and Hydraulic Apertures in Rough-walled Fractures,” J. Geophys. Res., Vol. 67,pp.24629-24636.

    Shemin, Ge., (1997), “A Governing Equation for Fluid Flow in Rough Fracture,” Water Resource Research, Vol. 33, No.1, pp.53-61.

    Snow, D., (1969), “Anisotropic permeability of fractured media,” Water Resources Research, Vol. 5, No.6, pp.1273-1289.

    Sillman, S. E., (1989), “An Interpretation of the Difference Between Aperture Estimates Derived from Hydraulic and Tracer Tests is a Single Fracture,” Water Resources Research, Vol. 25, No.10, pp.2275-2283.

    Sisavath, S., and Zimmerman R. W., (2003), “A Simple Model for Deviations for the Cubic Law for a Fracture undergoing Dilation or Closure,” Pure and Applied Geophysics, Vol. 160, pp.1009-1022.

    Sarkar, M., (2004), “Fluid Flow Modelind in Fractures,” MIT Earth Resources Laboratory.

    Tsang, Y. W., and Tsang, C. F., (1987), “Channel Model of Flow Through Fractured Media,” Water Resources Research, Vol. 23, No.3, pp.467-479.

    Tsang, Y. W., and Tsang, C. F., (1989), “Flow Channeling in Single Fracture as a Two-Dimensional Strongly Heterogeneous Permeable Medium,” Water Resources Research, Vol. 25, No.9, pp.2076-2080.

    Tse, R., and Cruden, DM., (1979), “Estimating Joint Roughness Coefficients,” International Journal of Rock Mechanics and Mining Sci. , Vol. 16, No.5, pp.303-307.

    Van Dyke, M., (1987), “Slow Variations in Continuum Mechanics,” Adv. Appl. Mech., Vol. 25, pp.1-43.

    Witherspoon, P. A., Wang, J. S. Y., and Iwai, K., (1980), “Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture,” Water Resources Research, Vol. 16, pp.1016-1024.

    Walsh, J. B., (1981), “Effect of Pressure and Confining Pressure on Fracture Permeability,” International Journal of Rock Mechanics Sci. and Geomech. Abstr. , Vol. 18, pp.429-435.

    Wilkes, J. O., (1999), “Fluid Mechanics for Chemical Engineers,” Prentice Hall.

    Wittke, W., (1990), “Rock Mechanics-Theory and Applications with case Histories,” Springer-Verlag Company.

    Meheust, Y., and Schmittbuhl, J., (2003), “Scale Effects Related to Flow in Rough Fractures,” Pure and Applied Geophysics, Vol. 160, pp.1023-1050.

    Yeo, IW., and Ge, SM., (2005), “Applicable Range of the Reynolds Equation for Fluid Flow in a Rock Fracture,” Geosciences Journal, Vol. 9, No.4, pp.347-352.

    Zimmerman, R. W., Kumar, S., and Bodvarsson, G.S., (1991), ”Lubrication Theory Analysis of the Permeability of Rough-walled Fractures,” International Journal of Rock Mechanics Sci. and Geomech. Abstr. , Vol. 28, No.4, pp.325-331.

    Zimmerman, R. W., Chen, D.W., and Cook, N.G.W., (1992), “The Effect of Contact Area on the Permeability of Fractures,” Journal of Hydrology, Vol. 139, pp. 76-96.

    Zimmerman, R. W., and Main, I. G., (2004), “Hydromechanical Behaviour of Fractured Rocks,”Mechanics of Fluid-Saturated Rocks, pp.361-419.

    李振誥、林碧山,(1993),”破裂面幾何參數對質點傳輸延散作用之研究”,台灣水利,第41卷,第4期,pp.75-89。

    李振誥、陳榮華、林碧山,(1995),”正交破裂面傳輸模式應用於蘭嶼儲存場破裂安山岩體中污染物傳輸之研究”,中國環境工程學刊,第5卷,第2期,pp.149-160。

    李振誥、林碧山,(1997),”破裂岩體中隧道地下水滲流之研究”,第七屆大地工程學術研討會,台北,金山,pp.1187-1194。

    陳榮華、張善順、李振誥、陳寒濤,(1998),”破裂岩層中溶質傳輸之徑向延散模式分析及應用於示蹤劑試驗”, 礦冶,第42卷,第2期,pp.115-126。

    陳榮華、李振誥,(1999),”破裂岩體中節理幾何參數與水力參數相關性之研究”,礦冶研討會,pp.75-87。

    趙振宇,(1999),”岩石節理面力學性質與導水性偶合行為研究”,博士論文,台灣大學,台北。

    陳榮華、葉義章、林宏奕、李振誥,(2000),”岩石單一裂隙水力參數與傳輸參數探討”,岩盤工程研討會,國立中興大學,pp.533-542。

    林宏奕、李振誥、洪浩原、陳尉平,(2002),”應用離散破裂面模式於岩體隧道滲流之研究-以坪林隧道為例”,中國土木水利工程學刊,第14卷,第3期,pp.429-439。

    林宏奕、李振誥,(2003),”破裂岩體隧道開挖對滲透係數之影響-以雪山隧道為例”,礦冶,中國礦冶工程學會會刊,第47卷,第2期,pp.110-122。

    林碧山、李振誥、李禎常、林宏奕,(2005),”破裂岩體汙染物傳輸性質之研究-以蘭嶼地區為例”,台灣水利,第53卷,第1期,pp. 34-45。

    下載圖示 校內:立即公開
    校外:2006-07-12公開
    QR CODE