簡易檢索 / 詳目顯示

研究生: 許維軒
Xu, Wei-Xuan
論文名稱: 以平行基因演算法開發動態彈性指標的高效率計算策略
Parallel Genetic Algorithm Used in Efficient Computation of Dynamic Flexibility Index
指導教授: 張珏庭
Chang, Chuei-Tin
李瑞元
Lee, Jui-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 150
中文關鍵詞: 動態彈性指標基因演算法活性約束法平行運算
外文關鍵詞: Dynamic flexibility index, Genetic Algorithms, Active Set Method, Parallel Computation
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract II 誌謝 XV 目錄 XVI 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3研究目的 5 1.4章節組織 5 第二章 動態操作系統之彈性分析-回顧 6 2.1 穩態及動態彈性指標之定義 6 2.2 動態彈性指標數值求解方法 10 2.2.1 動態頂點法 11 2.2.2 穩態及動態活性約束法 13 第三章 以常微分方程式為基礎的動態彈性指標 19 3.1 實際動態系統的額外限制 19 3.2 頂點法之優化策略-改良式窮舉法 20 3.3以基因演算法輔助頂點之搜索策略 23 3.4以平行運算加速GA輔助之頂點搜索策略 26 3.5 PGA輔助頂點搜索之常微分方程案例 29 3.5.1 雙水槽緩衝系統(double buffer tank) 29 3.5.2 酒精發酵槽系統(Alcoholic fermentation process) 40 第四章 以偏微分方程式為基礎的動態彈性指標 63 4.1 偏微分方程動態系統之離散化 63 4.2 PGA輔助頂點搜索之偏微分方程案例 65 4.2.1 一維平板熱傳導動態系統 65 4.2.2 球體熱傳導動態系統 77 第五章 PGA增強之活性約束法 89 5.1 活性約束法之額外限制 89 5.2 PGA結合活性約束法 91 第六章 結論與展望 96 6.1 研究結論 96 6.2 未來展望 96 參考文獻 98 附錄A:雙水槽系統PGA輔助頂點法程式碼 101 附錄B:雙水槽系統PGA增強之活性約束法程式碼 112

    Akbari, S., Lopes, R. A., & Martins, J. (2024). The potential of residential load flexibility: An approach for assessing operational flexibility. International Journal of Electrical Power & Energy Systems, 158, 109918.
    Ali, S. M., Chang, C.-T., & Chang, J.-S. (2022a). Application of dynamic flexibility index for evaluation of process control system designs. Computers & Chemical Engineering, 166, 107988.
    Ali, S. M., Chang, C.-T., & Chang, J.-S. (2022b). Application of dynamic flexibility index for process design improvement. Chemical Engineering Research and Design, 185, 368-376.
    Ali, S. M., Hwang, S.-W., Chang, C.-T., & Chang, J.-S. (2021). An effective numerical procedure for evaluating flexibility indices of dynamic systems with piecewise constant manipulated variables. Computers & Chemical Engineering, 154, 107464.
    Di Pretoro, A., Joulia, X., & Montastruc, L. (2021). Impact of Control Strategy on Chemical Process Dynamic Flexibility Performance: A Switchability Analysis Application. 2021 9th International Conference on Systems and Control (ICSC),
    Dimitriadis, V., Shah, N., & Pantelides, C. (1997). Modeling and safety verification of discrete/continuous processing systems. AIChE Journal, 43(4), 1041-1059.
    Dimitriadis, V. D., & Pistikopoulos, E. N. (1995). Flexibility analysis of dynamic systems. Industrial & Engineering Chemistry Research, 34(12), 4451-4462.
    Fabro, J. A., & Arruda, L. V. (2003). Fuzzy-neuro predictive control, tuned by genetic algorithms, applied to a fermentation process. Proceedings of the 2003 IEEE International Symposium on Intelligent Control,
    Grossmann, I. E., & Floudas, C. A. (1987). Active constraint strategy for flexibility analysis in chemical processes. Computers & Chemical Engineering, 11(6), 675-693.
    Gu, S., Zhang, L., Zhuang, Y., Du, J., & Shao, C. (2023). Integrated synthesis and control of heat exchanger networks with dynamic flexibility consideration. Applied Thermal Engineering, 218, 119304.
    Huang, B.-J. (2022). A Novel Numerical Strategy for Computing Flexibility Indices of Lumped and Distributed Dynamic Systems. (Master's thesis). National Cheng Kung University, Tainan, Taiwan.
    Huang, S.-W. (2019). A Novel Numerical Strategy for Computing Flexibility Index of Dynamic Systems with Piecewise Constant Manipulated Variables. (Master's thesis). National Cheng Kung University, Tainan, Taiwan.
    Khalil, H. K. (2002). Control of nonlinear systems. Prentice Hall, New York, NY.
    Maher, M. (1995). Modélisation et élaboration d'algorithmes d'estimation et de commande: application à un bioprocédé Toulouse 3].
    Malcolm, A., Polan, J., Zhang, L., Ogunnaike, B. A., & Linninger, A. A. (2007). Integrating systems design and control using dynamic flexibility analysis. AIChE Journal, 53(8), 2048-2061.
    Pretoro, A., Montastruc, L., Joulia, X., & Manenti, F. (2019). Dynamic flexibility analysis of a distillation column. Chemical Engineering Transactions, 74, 703-708.
    Sanchez-Sanchez, K. B., & Ricardez-Sandoval, L. A. (2013). Simultaneous design and control under uncertainty using model predictive control. Industrial & Engineering Chemistry Research, 52(13), 4815-4833.
    Serra, A., Strehaiano, P., & Taillandier, P. (2005). Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth; impact of a wine yeast interspecific hybridization on these parameters. International journal of food microbiology, 104(3), 257-265.
    Swaney, R. E., & Grossmann, I. E. (1985a). An index for operational flexibility in chemical process design. Part I: Formulation and theory. AIChE Journal, 31(4), 621-630.
    Swaney, R. E., & Grossmann, I. E. (1985b). An index for operational flexibility in chemical process design. Part II: Computational algorithms. AIChE Journal, 31(4), 631-641.
    Tang, W., & Daoutidis, P. (2019). A bilevel programming approach to the convergence analysis of control-Lyapunov functions. IEEE Transactions on Automatic Control, 64(10), 4174-4179.
    Tian, H., Jagana, J. S., Zhang, Q., & Ierapetritou, M. (2024). Feasibility/Flexibility-based optimization for process design and operations. Computers & Chemical Engineering, 180, 108461.
    Tian, Z., Li, X., Niu, J., Zhou, R., & Li, F. (2024). Enhancing operation flexibility of distributed energy systems: A flexible multi-objective optimization planning method considering long-term and temporary objectives. Energy, 288, 129612.
    Wu, R.-S., & Chang, C.-T. (2017). Development of mathematical programs for evaluating dynamic and temporal flexibility indices based on KKT conditions. Journal of the Taiwan Institute of Chemical Engineers, 73, 86-92.
    Zhou, H., Li, X., Qian, Y., Chen, Y., & Kraslawski, A. (2009). Optimizing the initial conditions to improve the dynamic flexibility of batch processes. Industrial & Engineering Chemistry Research, 48(13), 6321-6326.

    無法下載圖示 校內:2029-07-31公開
    校外:2029-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE