簡易檢索 / 詳目顯示

研究生: 謝旻樺
Hsieh, Min-Hua
論文名稱: 尋找及探討具備腫瘤胚特性之新穎生物標記基因並強調於Zinc Finger Protein 496
The search and characterization of potential novel oncofetal markers with emphasis on Zinc Finger Protein 496
指導教授: 何中良
Ho, Chung-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 腫瘤胚胎基因腫瘤胚胎幹細胞標誌生物資訊分析Wnt訊息傳遞路徑ZNF496
外文關鍵詞: Oncofetal gene, oncofetal cancer stem cell marker, Bioinformatics analyses, Wnt/β-catenin signaling pathway, ZNF496
相關次數: 點閱:199下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤胚胎基因(Oncofetal genes)是指在胚胎發育表現量較高之基因,而隨著年齡增加表現量也會隨之減少或不表現。當患有惡性腫瘤時,腫瘤胚胎基因會有再度表現之情形,在臨床上可以作為癌症診斷以及偵測復發之風險。為了找到新穎的腫瘤胚胎基因,實驗室在先前建立了一套生物資訊分析系統,利用表達序列標幟(EST)資料庫尋找可能為腫瘤胚胎之基因。由此生物資訊系統我們找到了29個已知基因以及44個未知基因,其中在這29個已知基因之中有5個基因已被證實為腫瘤胚胎基因。而實驗室也進一步去研究這44個未知基因,目前證實至少有3個基因為腫瘤胚胎基因,包括Lin28B、LRRC16B以及U41。此外Lin28B經實驗證實為一個良好的循環腫瘤胚胎幹細胞標記基因(Circulating oncofetal cancer-stem-cell-like marker),此基因在正常人週邊血並不表現,因此可用以偵測週邊血中的腫瘤幹細胞(Cancer stem cell),並且針對病患進行預後風險及復發機率之評估。接著我們發現這29個已知基因之中富含著Wnt訊息傳遞路徑之標靶基因(Wnt target gene),透過實驗證實未知基因U41為Wnt訊息傳遞路徑之標靶基因。接著實驗室進一步去設立生物資訊之篩選方法,希望能找到更多Wnt訊息傳遞路徑之標靶基因。經過生物資訊篩選我們找到了50個未知基因,實驗室先前已證實至少有2個基因為Wnt訊息傳遞路徑之標靶基因,包括RMI2以及ZNF496所以我們第一個實驗目的是希望在實驗室所建立尋找新穎oncofetal gene及Wnt target gene的生物資訊方法分別所找出的44個未知基因及50個未知基因中,尋找其他和Lin28B有相同特性且不會在周邊血表現並且有腫瘤胚胎幹細胞特性之新穎標記分子(oncofetal cancer stem cell marker)。利用RT-PCR去觀察這些基因在肝癌細胞株(HCC cell lines)、正常人週邊血(Normal peripheral blood)、誘導性多功能幹細胞(induced pluripotent stem cell)以及正常人各部位組織中的表現。我們發現有4個基因(SVOP、MDFI、MARCH4、BCAN)擁有腫瘤胚胎特性,且在正常人之週邊血中不會有表現。接著我們利用The Cancer Genome Altas(TCGA) data去探討這4個基因與癌症之間的關係,發現這4個基因的表現會造成許多不同癌症之死亡率有顯著的差異,代表這4個基因可能是值得研究的標誌基因。接著我們利用QRT-PCR做進一步的研究,發現SVOP、MDFI、MARCH4以及BCAN在周邊血會有微量的表現;在肝癌腫瘤-非腫瘤組織配對的檢體中,在腫瘤組織以及非腫瘤組織的表現量並沒有顯著的差異。這些結果不如我們的預期,因此這4個基因無法做為偵測循環肝癌腫瘤幹細胞(Circulating HCC cancer stem cells)之腫瘤胚胎標記基因,但我們推測這4個基因在其他癌症中還是具有研究的潛力。第二個實驗目的是要繼續研究先前實驗室利用生物資訊方式並且經過實驗證實為新的Wnt訊息傳遞路徑之標靶基因-Zinc Finger Protein 496(ZNF496)。在先前的研究指出在許多癌症中,常發現Wnt訊息傳遞路徑不正常的活化,其中也包括肝癌,而肝癌為全球最常見的惡性腫瘤之一。我們的目的是為了研究ZNF496在肝癌細胞中所扮演的角色及功能,在先前的實驗結果顯示過表達ZNF496會促使幹細胞特性、上皮-間質轉化(EMT)及細胞增生。在我的研究結果發現,過表達ZNF496會促使參與在細胞週期(cell cycle)中的基因表達量上升、細胞轉移性(cell migration)及侵襲性(cell invasion)增加。

    Oncofetal genes typically are present only during fetal development, down-regulated in adults, but re-expressed in certain types of cancers. Our laboratory performed bioinformatics analyses using expressed sequence tags (EST) database and found 29 known genes and 44 unknown genes. We further studied the 44 then unknown genes and discovered the novel oncofetal gene Lin28B. We used Lin28B as a marker to detect circulating tumor cells and were able to split early stage HCC into 2 recurrence curves, in which patients with detectable Lin28B positive cells in circulation behaved more like late stage HCC. Our first aim in this study is to find novel oncofetal cancer stem cell markers other than Lin28B which are not expressed in the normal peripheral blood cells. Four genes (SVOP, MDFI, MARCH4, and BCAN) emerged which showed good oncofetal patterns and were not expressed in normal peripheral blood cells as tested by RT-PCR. When we used QRT-PCR for further investigation, it was found that these four genes were expressed in normal peripheral blood cells at high-enough background levels. These results were not measuring up to our criteria as oncofetal markers. We modified the bioinformatics algorithms in hope to enrich WNT target genes. The algorithms resulted in 50 unknown genes, we found ZNF496 is a novel WNT target gene. The second aim of this study is to continue the study of Zinc Finger Protein 496 (ZNF496). Previous studies indicated that ZNF496 can promote EMT, stemness, and cell proliferation. In my studies, we found ZNF496 can promote cell migration and invasion.

    中文摘要 I 英文延伸摘要(Extended Abstract) III 致謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XVIII 附錄 XIX 第一章 緒論 1 1.1 腫瘤胚胎抗原(Oncofetal Antigen) 1 1.2 循環腫瘤細(Circulating tumor cell, CTC) 2 1.3 腫瘤幹細胞(Cancer stem cell) 2 1.4 Bioinformatics 3 1. 表達序列標幟(Expressed Sequence Tags, EST) 3 2. 生物資料庫(Bio-database)的建立 4 3. 利用生物資訊的方式尋找新穎的Oncofetal gene 4 4. 利用生物資訊的方式尋找新穎的Wnt/β-catenin標靶基因 5 5. 尋找新穎的Oncofetal tumor-stem-cell-like gene-Lin28B 6 1.5 Wnt/β-catenin傳遞路徑的總覽 7 1.6 Wnt/β-catenin傳遞路徑和肝臟之間的關係 8 1. Wnt/β-catenin傳遞路徑和肝臟生長及再生的關係 8 2. Wnt/β-catenin傳遞路徑和肝癌的關係 9 1.7 Wnt/β-catenin標靶基因在臨床之應用 9 1.8 ZNF496可能為Wnt/β-catenin傳遞路徑標靶基因 10 1. 利用Lithium chloride活化Wnt/β-catenin傳遞路徑並觀察ZNF496基因之  mRNA表現 10 2. 利用Wnt-3A條件培養液活化Wnt/β-catenin傳遞路徑並觀察ZNF496基因之mRNA表現 10 3.以染色質免疫沉澱法觀察ZNF496是否與β-catenin/TCF complex有交互作用 11 4. 利用Luciferase assay分析β-catenin是否調節ZNF496 promoter 11 1.9 ZNF496之結構與功能以及其在肝癌中所扮演的角色 12 1.10實驗目的 13 1. 實驗目的之一 13 2. 實驗目的之二 13 第二章 實驗材料與方法 14 2.1 反轉錄聚合酶連鎖反應 (RT-PCR) 14 1. Total RNA萃取 14 2. 反轉錄合成 (Reverse transcription reaction) 14 3. 聚合酶連鎖反應 (Polymerase Chain Reaction) 15 4. DNA gel製備 (Agarose gel) 16 2.2 細胞培養 (cell culture) 16 1. 實驗細胞株及試劑 16 2. 解凍細胞 17 3. 細胞繼代培養 17 4. 細胞數目測定 17 5. 細胞冷凍儲存 17 2.3 細胞相關實驗 18 1. 反轉錄病毒(Retrovirus)製備及感染 18 2. 細胞遷移實驗 (cell migration assay) 19 3. 細胞侵襲實驗 (cell invasion assay) 19 2.4 西方墨點法 (Western blotting) 20 1. 試劑 20 2. 蛋白質萃取 (protein extraction) 22 3. 蛋白質濃度定量分析 (protein concentration assay) 22 4. 膠體電泳(SDS Poly-acrylamide-gel-electrophoresis) 23 5. 轉漬 (Transfer) 23 6. 結合一級抗體及二級抗體 24 7. ECL呈色 24 2.5 免疫螢光染色 24 第三章 實驗結果 26 3.1、篩選具備腫瘤胚特性之新穎生物標記基因之結果 26 1. 利用生物資訊所找出的未知基因進行篩選 26 2. 利用cBioPortal for Cancer Genomics database分析The Cancer Genome Atlas(TCGA)中SVOP、MDFI、MARCH4及BCAN與各種癌症的關係 27 3. 探討SVOP、MDFI、MARCH4及BCAN是否真的不會在週邊血中表現以及在肝癌腫瘤-非腫瘤組織配對之基因表現量 28 3.2、探討ZNF496與肝癌之相關性 28 1. 探討過表達ZNF496與細胞增生之分子機轉 28 2. 探討過表達ZNF496與上皮間質轉化之分子機轉、細胞轉移性及侵襲性之相關性 29 第四章 討論 31 4.1、篩選具備腫瘤胚特性之新穎生物標記基因 31 4.2、ZNF496與肝癌之相關性 32 第五章 表 33 第六章 圖 37 第七章 參考資料 52 第八章 附錄 57

    1 Pierce, G. B. The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am J Pathol 113, 117-124 (1983).
    2 Monk, M. & Holding, C. Human embryonic genes re-expressed in cancer cells. Oncogene 20, 8085-8091, doi:10.1038/sj.onc.1205088 (2001).
    3 Wepsic, H. T. Overview of oncofetal antigens in cancer. Ann Clin Lab Sci 13, 261-266 (1983).
    4 Wang, Y. Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther 8, 2103-2109, doi:10.1158/1535-7163.MCT-09-0282 (2009).
    5 Ma, Y. et al. Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol Cell Proteomics 8, 1878-1890, doi:10.1074/mcp.M800541-MCP200 (2009).
    6 Ma, Y. et al. The relationship between early embryo development and tumourigenesis. J Cell Mol Med 14, 2697-2701, doi:10.1111/j.1582-4934.2010.01191.x (2010).
    7 Xie, K. & Abbruzzese, J. L. Developmental biology informs cancer: the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers. Cancer Cell 4, 245-247 (2003).
    8 Wu, F., Stutzman, A. & Mo, Y. Y. Notch signaling and its role in breast cancer. Front Biosci 12, 4370-4383 (2007).
    9 Wilczynski, J. R. Cancer and pregnancy share similar mechanisms of immunological escape. Chemotherapy 52, 107-110, doi:10.1159/000092537 (2006).
    10 Gitlin, D., Perricelli, A. & Gitlin, G. M. Synthesis of -fetoprotein by liver, yolk sac, and gastrointestinal tract of the human conceptus. Cancer Res 32, 979-982 (1972).
    11 Nap, M., Mollgard, K., Burtin, P. & Fleuren, G. J. Immunohistochemistry of carcino-embryonic antigen in the embryo, fetus and adult. Tumour Biol 9, 145-153 (1988).
    12 Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3, 917-921 (1997).
    13 Vaitukaitis, J. L. Human chorionic gonadotropin--a hormone secreted for many reasons. N Engl J Med 301, 324-326, doi:10.1056/NEJM197908093010609 (1979).
    14 Kassanos, D. et al. Tissue polypeptide specific antigen (TPS) throughout normal pregnancy. Anticancer Res 20, 2129-2131 (2000).
    15 Plaks, V., Koopman, C. D. & Werb, Z. Cancer. Circulating tumor cells. Science 341, 1186-1188, doi:10.1126/science.1235226 (2013).
    16 Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351, 781-791, doi:10.1056/NEJMoa040766 (2004).
    17 de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14, 6302-6309, doi:10.1158/1078-0432.CCR-08-0872 (2008).
    18 Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559-1564, doi:10.1126/science.1203543 (2011).
    19 Alix-Panabieres, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59, 110-118, doi:10.1373/clinchem.2012.194258 (2013).
    20 Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105-111, doi:10.1038/35102167 (2001).
    21 Hogan, C. J. et al. Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood 90, 85-96 (1997).
    22 Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F. & Wicha, M. S. Stem cells in normal breast development and breast cancer. Cell Prolif 36 Suppl 1, 59-72 (2003).
    23 Sun, J. H., Luo, Q., Liu, L. L. & Song, G. B. Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol 22, 3547-3557, doi:10.3748/wjg.v22.i13.3547 (2016).
    24 Bozorgi, A., Khazaei, M. & Khazaei, M. R. New Findings on Breast Cancer Stem Cells: A Review. J Breast Cancer 18, 303-312, doi:10.4048/jbc.2015.18.4.303 (2015).
    25 Stupp, R. & Hegi, M. E. Targeting brain-tumor stem cells. Nat Biotechnol 25, 193-194, doi:10.1038/nbt0207-193 (2007).
    26 Pine, S. R., Marshall, B. & Varticovski, L. Lung cancer stem cells. Dis Markers 24, 257-266 (2008).
    27 Adams, M. D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651-1656 (1991).
    28 Nagaraj, S. H., Gasser, R. B. & Ranganathan, S. A hitchhiker's guide to expressed sequence tag (EST) analysis. Brief Bioinform 8, 6-21, doi:10.1093/bib/bbl015 (2007).
    29 Emmersen, J. Generating unigene collections of expressed sequence tag sequences for use in mass spectrometry identification. Methods Mol Biol 367, 77-86, doi:10.1385/1-59745-275-0:77 (2007).
    30 周靖恆. 結合生物資訊的方法探討腫瘤相關基因在人類腎臟癌中的表現, 成功大學, (2005).
    31 Hsu, C. C. et al. Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene 30, 654-667, doi:10.1038/onc.2010.451 (2011).
    32 葉秀汝. 探討一個新的胚胎腫瘤幹細胞標記, 成功大學, (2014).
    33 陳怡文. 結合生物資訊暨實驗篩選以尋找 Wnt/β-catenin 傳遞路徑之新穎基因, 成功大學, (2011).
    34 Cheng, S. W. et al. Lin28B is an oncofetal circulating cancer stem cell-like marker associated with recurrence of hepatocellular carcinoma. PLoS One 8, e80053, doi:10.1371/journal.pone.0080053 (2013).
    35 Sharma, R. P. & Chopra, V. L. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 48, 461-465 (1976).
    36 Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99-109 (1982).
    37 Rijsewijk, F. et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649-657 (1987).
    38 MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17, 9-26, doi:10.1016/j.devcel.2009.06.016 (2009).
    39 Habas, R. & Dawid, I. B. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol 4, 2, doi:10.1186/jbiol22 (2005).
    40 Sekine, S., Gutierrez, P. J., Lan, B. Y., Feng, S. & Hebrok, M. Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 45, 361-368, doi:10.1002/hep.21523 (2007).
    41 Tan, X., Behari, J., Cieply, B., Michalopoulos, G. K. & Monga, S. P. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology 131, 1561-1572, doi:10.1053/j.gastro.2006.08.042 (2006).
    42 Tan, X. et al. Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology 129, 285-302 (2005).
    43 Ihara, A., Koizumi, H., Hashizume, R. & Uchikoshi, T. Expression of epithelial cadherin and alpha- and beta-catenins in nontumoral livers and hepatocellular carcinomas. Hepatology 23, 1441-1447, doi:10.1053/jhep.1996.v23.pm0008675162 (1996).
    44 de La Coste, A. et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 95, 8847-8851 (1998).
    45 Kondo, Y. et al. Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma. Jpn J Cancer Res 90, 1301-1309 (1999).
    46 Wong, C. M., Fan, S. T. & Ng, I. O. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 92, 136-145 (2001).
    47 Behari, J. The Wnt/beta-catenin signaling pathway in liver biology and disease. Expert Rev Gastroenterol Hepatol 4, 745-756, doi:10.1586/egh.10.74 (2010).
    48 Curtin, J. C. & Lorenzi, M. V. Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 1, 552-566, doi:10.18632/oncotarget.101016 (2010).
    49 Takahashi-Yanaga, F. & Kahn, M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16, 3153-3162, doi:10.1158/1078-0432.CCR-09-2943 (2010).
    50 Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11, 791-801, doi:10.1016/j.devcel.2006.10.003 (2006).
    51 Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614-620, doi:10.1038/nature08356 (2009).
    52 Lau, T. et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res 73, 3132-3144, doi:10.1158/0008-5472.CAN-12-4562 (2013).
    53 Huntley, S. et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 16, 669-677, doi:10.1101/gr.4842106 (2006).
    54 Urrutia, R. KRAB-containing zinc-finger repressor proteins. Genome Biol 4, 231, doi:10.1186/gb-2003-4-10-231 (2003).
    55 Vissing, H., Meyer, W. K., Aagaard, L., Tommerup, N. & Thiesen, H. J. Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett 369, 153-157 (1995).
    56 Gou, D. M. et al. Cloning and characterization of a novel Kruppel-like zinc finger gene, ZNF268, expressed in early human embryo. Biochim Biophys Acta 1518, 306-310 (2001).
    57 Krebs, C. J., Zhang, D., Yin, L. & Robins, D. M. The KRAB zinc finger protein RSL1 modulates sex-biased gene expression in liver and adipose tissue to maintain metabolic homeostasis. Mol Cell Biol 34, 221-232, doi:10.1128/MCB.00875-13 (2014).
    58 Arenzana, T. L., Schjerven, H. & Smale, S. T. Regulation of gene expression dynamics during developmental transitions by the Ikaros transcription factor. Genes Dev 29, 1801-1816, doi:10.1101/gad.266999.115 (2015).
    59 Ma, X. et al. ZHX1 Inhibits Gastric Cancer Cell Growth through Inducing Cell-Cycle Arrest and Apoptosis. J Cancer 7, 60-68, doi:10.7150/jca.12973 (2016).
    60 Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 50, 16-28, doi:10.1016/j.molcel.2013.01.024 (2013).
    61 Lai, K. P. et al. Overexpression of ZFX confers self-renewal and chemoresistance properties in hepatocellular carcinoma. Int J Cancer 135, 1790-1799, doi:10.1002/ijc.28819 (2014).
    62 Aslan, B. et al. The ZNF304-integrin axis protects against anoikis in cancer. Nat Commun 6, 7351, doi:10.1038/ncomms8351 (2015).
    63 Yang, L. et al. The previously undescribed ZKSCAN3 (ZNF306) is a novel "driver" of colorectal cancer progression. Cancer Res 68, 4321-4330, doi:10.1158/0008-5472.CAN-08-0407 (2008).
    64 Yang, L., Zhang, L., Wu, Q. & Boyd, D. D. Unbiased screening for transcriptional targets of ZKSCAN3 identifies integrin beta 4 and vascular endothelial growth factor as downstream targets. J Biol Chem 283, 35295-35304, doi:10.1074/jbc.M806965200 (2008).
    65 Lo, F. Y. et al. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization. BMC Cancer 12, 235, doi:10.1186/1471-2407-12-235 (2012).
    66 張瀞云. Zinc Finger Protein 496 在肝癌中是一個有潛力的 Wnt/β-catenin 路徑中的標的基因, 成功大學, (2016).
    67 Ayte, J., Schweitzer, C., Zarzov, P., Nurse, P. & DeCaprio, J. A. Feedback regulation of the MBF transcription factor by cyclin Cig2. Nat Cell Biol 3, 1043-1050, doi:10.1038/ncb1201-1043 (2001).
    68 Griffiths, D. J., Liu, V. F., Nurse, P. & Wang, T. S. Role of fission yeast primase catalytic subunit in the replication checkpoint. Mol Biol Cell 12, 115-128 (2001).
    69 Ellenrieder, C. et al. The long form of CDK2 arises via alternative splicing and forms an active protein kinase with cyclins A and E. DNA Cell Biol 20, 413-423, doi:10.1089/104454901750361479 (2001).
    70 Stacey, D. W. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 15, 158-163 (2003).
    71 Endicott, J. A. & Noble, M. E. Structural principles in cell-cycle control: beyond the CDKs. Structure 6, 535-541 (1998).
    72 Lindstrom, M. S. & Wiman, K. G. Role of genetic and epigenetic changes in Burkitt lymphoma. Semin Cancer Biol 12, 381-387 (2002).
    73 Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420-1428, doi:10.1172/JCI39104 (2009).

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE