簡易檢索 / 詳目顯示

研究生: 徐銘謙
Syu, Ming-Cian
論文名稱: 利用中性內含物設計多層熱超材料
Multilayer thermal metamaterials based on the theory of neutral inclusions
指導教授: 陳東陽
Chen, Dong-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 187
中文關鍵詞: 熱傳導熱超材料熱功能裝置中性內含物不完美界面複合球或圓柱堆積多層介質
外文關鍵詞: thermal conduction, thermal metamaterials, thermal functionalities, neutral inclusions, imperfect interfaces, composite spheres or cylinders assemblages, multilayer media
相關次數: 點閱:29下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用中性內含物的等效材料性質概念,將不同熱傳導係數的材料組合為內含物,使其成為與周圍的背景材料具有相同熱傳導係數的複合材料,達成熱中性,同時產生自然界中的材料不具有的熱傳導特性,如熱隱形和熱集中。而熱傳導的成因除了材料性質以外,也會受到幾何形狀及接觸界面情況等影響。本論文將模擬同向性及異向性材料做為內含物之核心或斗篷時的情況,而內含物的幾何形狀在二維圓柱或三維球模擬,接觸界面除了假設材料間的接觸面是完美結合,為了更加接近現實情況,加入兩種不完美界面:低傳導界面(lowly conducting interface)和高傳導界面(highly conducting interface),兩者分別對溫度和熱通量在界面產生不連續導致對內含物的等效熱傳導係數產生影響,因為現實中存在著材料因性質及其微結構的差異而產生的不完美界面,又或是材料本身表面存在裂隙、材料間結合不緊密等等原因產生不完美界面,因此模擬這兩種不完美界面相比模擬完美界面更接近於現實,將以上情況全部考慮後設計出熱超材料,在此之上再次延伸為多層斗篷,使得研究或實作中能夠使用各自所需性質的材料,在熱傳導方面還能保持熱中性並維持所需的熱隱形或熱集中。並在此基礎上,求得內含物中的核心與背景材料的溫度比值之極值。

    This study utilizes the concept of neutral inclusions in effective material properties, combining materials with different thermal conductivities into inclusions that have the same thermal conductivity as the surrounding background material, achieving thermal neutrality. This also generates thermal conduction characteristics not found in natural materials, such as thermal cloaking and thermal concentration. In addition to material properties, thermal conduction is influenced by geometric shapes and contact interfaces. This paper simulates the conditions when isotropic and anisotropic materials are used as cores or cloaks of inclusions. The geometries of the inclusions are modeled as two-dimensional cylinders or three-dimensional spheres. For contact interfaces, besides assuming perfect bonding between materials, two types of imperfect interfaces are introduced: lowly conducting interface and highly conducting interface. These interfaces cause temperature and heat flux discontinuities, affecting the effective thermal conductivity of the inclusions. In reality, imperfect interfaces arise due to differences in material properties and microstructures, surface cracks, and loose bonding between materials. Simulating these imperfect interfaces provides a more realistic representation compared to perfect interfaces. Considering all these factors, this study designs thermal metamaterials, further extending to multi-layer cloaks. This allows the use of materials with specific desired properties in practical applications, maintaining thermal neutrality while achieving the desired thermal cloaking or thermal concentration. Additionally, the study seeks to determine the extreme values of the temperature ratio between the core of the inclusions and the background material.

    中文摘要 i Abstract ii 誌謝 x 目錄 xi 表目錄 xiv 圖目錄 xv 第一章 緒論 1 1.1 理論背景與文獻回顧 1 1.2 研究動機 3 1.3 論文內容簡介 3 第二章 熱傳導的基本概念與相關理論 6 2.1 基本的熱傳遞分類 6 2.2 熱學中的物理量與超材料 10 2.3 熱傳導的基本理論 12 2.4 不完美界面的界面參數 15 第三章 三相至多相材料中包含不完美界面的二維圓柱型斗篷 21 3.1 透過內含物的概念推導熱中性條件 21 3.1.1 異向性核心內含物之熱中性條件 27 3.1.2 異向性斗篷內含物之熱中性條件 30 3.2 不完美界面的熱中性條件 35 3.2.1 低導熱界面之熱中性條件 35 3.2.2 高導熱界面之熱中性條件 37 3.3 含不完美界面的二維熱中性斗篷 39 3.3.1 含低導熱界面之內含物 40 3.3.2 含高導熱界面之內含物 43 3.4 含不完美界面的二維多層斗篷 46 3.4.1 完美界面之多層斗篷 47 3.4.2 低導熱界面之多層斗篷 53 3.4.3 高導熱界面之多層斗篷 63 第四章 三相至多相材料中包含不完美界面的三維球型斗篷 73 4.1 透過內含物的概念推導熱中性條件 73 4.1.1 異向性核心內含物之熱中性條件 78 4.1.2 異向性斗篷內含物之熱中性條件 82 4.2 不完美界面的熱中性條件 85 4.2.1 三維低導熱界面之熱中性條件 86 4.2.2 三維高導熱界面之熱中性條件 88 4.3 含不完美界面的三維熱中性斗篷 90 4.3.1 含低導熱界面之三維內含物 90 4.3.2 含高導熱界面之三維內含物 94 4.4 含不完美界面的三維多層斗篷 98 4.4.1 完美界面之三維多層斗篷 98 4.4.2 低導熱界面之三維多層斗篷 105 4.4.3 高導熱界面之三維多層斗篷 115 第五章 溫度場的極值 127 5.1 二維時的溫度場極值 127 5.1.1 完美界面之等向性圓柱型斗篷 127 5.1.2 低導熱界面之等向性圓柱型斗篷 130 5.1.3 高導熱界面之等向性圓柱型斗篷 133 5.1.4 完美界面之異向性圓柱型斗篷 134 5.1.5 低導熱界面之異向性圓柱型斗篷 138 5.1.6 高導熱界面之異向性圓柱型斗篷 140 5.2 三維時的溫度場極值 141 5.2.1 完美界面之等向性球型斗篷 142 5.2.2 低導熱界面之等向性球型斗篷 146 5.2.3 高導熱界面之等向性球型斗篷 149 5.2.4 完美界面之異向性球型斗篷 150 5.2.5 低導熱界面之異向性球型斗篷 153 5.2.6 高導熱界面之異向性球型斗篷 156 第六章 結論與未來展望 159 6.1 結論 159 6.2 未來展望 160 參考文獻 161 附錄A 基本熱傳導公式推導 164

    Alù, A. and Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Physical Review E, 72(1), 016623. (2005).

    Benveniste, Y. A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids, 54(4), 708-734. (2006).

    Benveniste, Y. and Miloh, T. Neutral inhomogeneities in conduction phenomena. Journal of the Mechanics and Physics of Solids, 47(4), 1873-1892. (1999).

    Chen, T., Weng, C. N. and Chen, J. S. Cloak for curvilinearly anisotropic media in conduction. Applied Physics Letters, 93(11), 4103. (2008).

    Chen, T., Hsieh, C. H. and Chuang, P. C. A Spherical Inclusion with Inhomogeneous Interface in Conduction. The Chinese Journal of Mechanics Series A, 19(1), 1-8. (2003).

    Chen, T. and Lin, J. H. Exact thermal invisibility for spherical cloaks with imperfect interfaces. AIP Advances, 12(7), 075214. (2022a).

    Chen, T. and Lin, J. H. Novel connections and physical implications of thermal metamaterials with imperfect interfaces. Scientific Reports, 12(1), 2734. (2022b).

    Chen, H. and Chan, C. T. Transformation media that rotate electromagnetic fields. Applied Physics Letters, 90(24), 241105. (2007).

    Cheng, H. and Torquato, S. Effective conductivity of dispersions of spheres with a superconducting interface. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453(1961), 1331-1344. (1997).

    Fan, C. Z., Gao, Y. and Huang, J. P. Shaped graded materials with an apparent negative thermal conductivity. Applied Physics Letters, 92(25), 1907. (2008).

    Gilbarg, D. and Trudinger, N. S. Elliptic Partial Differential Equations of Second Order. Springer. (2001)

    Gu, S., Monteiro, E. and He, Q. C. Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites. Composites Science and Technology, 71(9), 1209-1216. (2011).

    Holman, J. P. Heat Transfer 〖10〗^th Edition. McGraw Hill, New York. (2010).

    Han, T., Yuan, T., Li, B. and Qiu, C. W. Homogeneous thermal cloak with constant conductivity and tunable heat localization. Scientific Reports, 3(1), 1593. (2013).

    Huy, H. P. and Sánchez-Palencia, E. Phénomčnes de transmission ā travers des couches minces de conductivitéélevée. Journal of Mathematical Analysis and Applications, 47(2), 284-309. (1974).

    Hashin, Z. Thin interphase/imperfect interface in conduction. Journal of Applied Physics, 89(4), 2261-2267. (2001).

    Javili, A., Kaessmair, S. and Steinmann, P. General imperfect interfaces. Computer Methods in Applied Mechanics and Engineering, 275, 76-97. (2014).

    Lipton, R. Influence of interfacial surface conduction on the DC electrical conductivity of particle reinforced composites. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1973), 1371-1382. (1998).

    Lipton, R. and Vernescu, B. Composites with imperfect interface. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1945), 329-358. (1996).

    Milton, G. W., Briane, M. and Willis J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physices, 8(248), 1367-2630. (2006).

    Milton, G. W. The Theory of Composites, Cambridge University Press, Cambridge. (2002).

    Mansfield, E. H. Neutral Holes in plane sheet—reinforced iioles which are elastically equivalent to the uncut sheet. The Quarterly Journal of Mechanics and Applied Mathematics, 6(3), 370-378. (1953).

    Norris, A. N. and Parnel, W. J. Static elastic cloaking, low-frequency elastic wave transparency and neutral inclusions. Proceedings of the Royal Society A, 476(2240),20190725. (2020).

    Pendry, J. B., Schuring, D. and Smith, D. R. Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. (2006).

    Sanchez-Palencia, E. Comportement limite d’un probleme de transmissiona travers une plaque faiblement conductrice. CR Acad. Sci. Paris Ser. A, 270, 1026-1028. (1970).

    Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F. and Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5081), 977-980. (2006).

    Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 10(4), 509. (1968).

    Wang, X. and Schiavone, P. Neutral coated circular inclusions in finite plane elasticity of harmonic materials. European Journal of Mechanics - A/Solids, 33, 75-81. (2012).

    Ji, Q., Chen, X., Fang, G., Liang, J., Yan, X., Laude, V. and Kadic, M. Thermal cloaking of complex objects with the neutral inclusion and the coordinate transformation methods. AIP Advances, 9(4), 5029. (2019).

    張晉銓,利用座標轉換法來模擬熱流傳播方向的操控,國立成功大學土木所碩士論文 (2014)。

    紀佩瑩,不完美介面效應在靜態與時諧之熱屏蔽裝置的應用,國立成功大學土木所碩士論文 (2016)。

    黃冠閔,利用保角變換探討熱中性內含物與轉換光學問題,國立成功大學土木所碩士論文 (2017)。

    林俊宏,考慮不完美界面影響之熱傳導超材料設計,國立成功大學土木所博士論文(2022)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE