研究生: |
鄭廷瑜 Cheng, Ting-Yu |
---|---|
論文名稱: |
新的分析方法針對細胞內無標記之金屬奈米顆粒進行量化以及拉曼成像 New Approach for the Cellular Quantification and Raman Imaging of Non-labeled Metal Nanoparticles |
指導教授: |
孫亦文
Sun, I-Wen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 後染色處理 、SERS影像 、可視化定量 、無標記 、貴金屬奈米顆粒 |
外文關鍵詞: | post-staining process, SERS images, visualized quantitation, non-labeled, noble metal nanoparticles |
相關次數: | 點閱:103 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究中,我們開發一項原位SERS成像技術平台,通過非標記和後染色處理過程針對癌細胞以及正常細胞內的貴金屬奈米顆粒進行可視化以及半定量分析。在此項技術中,我們利用後染色的方法對細胞內的無標記奈米顆粒進行SERS分析。如此一來,貴金屬奈米顆粒的表面不需要修飾以硫醇為基底的拉曼分子,以防止不同細胞環境(如 pH 值和氧含量)以及細胞內蛋白酶(如GSH)所導致的降解干擾。我們嘗試了不同染料(即MB,MG,CV和R6G)的比較,結果顯示亞甲基藍(MB)在此成像檢測中位染色提供多個優勢,例如快速向內擴散到細胞中、更好的生物相容性以及通過表面增強拉曼散射產生的強信號。根據SERS的機制,亞甲基藍的這種局部 SERS 增強有利於監測材料位置並檢測單個細胞分佈中金屬納米粒子的濃度水平。這種SERS影像技術抗光漂白,利於長期檢測,並與流行的熒光成像和明/暗場圖像相結合,實現對細胞進行相互作用的有機和無機材料的多功能跟踪。在低分辨率和高分辨率圖像中採用 40x 和 100x 物鏡進行單細胞檢測,金屬納米顆粒的濃度低至每個單細胞 10 -9 M,這個濃度低於使用原子吸收光譜儀 (Atomic absorption spectroscopy,AAS)測量的偵測極限。最後,我們利用可視化定量SERS圖像觀察光熱治療後濃度與細胞刺激反應的關係,其形態變化與細胞內金屬濃度呈正相關。
Herein, we developed an in situ SERS imaging technology to visualize and semi-quantify the noble metal nanoparticles within cancer and normal cells by a non-labeled and post-staining process. In this technology, we use the post-staining to observe the non-labeled particle-treatment cells. Therefore, the surface of noble metal nanoparticles was not necessary to anchor thiol-based Raman reporter to prevent the degradation interference from the cellular environments (such as pH value and oxygen content) and the enzyme of living cells (such as GSH). Compared with different dyes (i.e., MG, CV and R6G), methylene blue (MB) offered several advantages for staining in this imaging detection, e.g., rapid inward diffusion into the cell, better biocompatibility, and strong signal via surface-enhanced Raman scattering (SERS) mechanism. Such local SERS enhancement of MB was implemented to monitor the location and detect the concentration level of metal nanoparticles in the distribution of a single cell. This Raman-map method was resistant to photo-blenching which was facile to long-term detection and integrated with the popular fluorescence imaging and bright/dark field images to achieve multi-functional tracking of the organic and inorganic material interacted with cells. Both 40x and 100x objectives were adopted in low- and high-resolution images for the single-cell level detection with metal nanoparticles at the concentration down to 10 -9 M per single cell, but it was a limited approach by using atomic absorption spectroscopy (AAS) measurement. Finally, we used the visualized quantitative SERS images to observe the relationship between the concentration and cellular stimulation response after photothermal therapy. The morphology change is positively correlated with the metal concentration in the cell.
1. Zhu, J.; Wang, Y.; Huo, D.; Ding, Q.; Lu, Z.; Hu, Y., Epitaxial growth of gold on silver nanoplates for imaging-guided photothermal therapy. Materials Science and Engineering: C 2019, 105, 110023.
2. Zhang, Y.; Liu, Z.; Thackray, B. D.; Bao, Z.; Yin, X.; Shi, F.; Wu, J.; Ye, J.; Di, W., Intraoperative Raman‐Guided Chemo‐Photothermal Synergistic Therapy of Advanced Disseminated Ovarian Cancers. Small 2018, 14 (31), 1801022.
3. He, J.; Qiao, Y.; Zhang, H.; Zhao, J.; Li, W.; Xie, T.; Zhong, D.; Wei, Q.; Hua, S.; Yu, Y., Gold–silver nanoshells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging. Biomaterials 2020, 234, 119763.
4. Tang, S.; Zheng, J., Antibacterial activity of silver nanoparticles: structural effects. Advanced healthcare materials 2018, 7 (13), 1701503.
5. Hsu, C.-W.; Cheng, N.-C.; Liao, M.-Y.; Cheng, T.-Y.; Chiu, Y.-C., Development of Folic Acid-Conjugated and Methylene Blue-Adsorbed Au@ TNA Nanoparticles for Enhanced Photodynamic Therapy of Bladder Cancer Cells. Nanomaterials 2020, 10 (7), 1351.
6. Zhang, L.; Cheng, Q.; Li, C.; Zeng, X.; Zhang, X.-Z., Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination. Biomaterials 2020, 248, 120029.
7. Ruan, S.; Yuan, M.; Zhang, L.; Hu, G.; Chen, J.; Cun, X.; Zhang, Q.; Yang, Y.; He, Q.; Gao, H., Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2015, 37, 425-435.
8. Carbone, M., Bi-verse relationship between gold nanoparticles and intracellular pH. Journal of King Saud University-Science 2017, 29 (3), 284-290.
9. Guerrini, L.; Pazos-Perez, N.; Garcia-Rico, E.; Alvarez-Puebla, R., Cancer characterization and diagnosis with SERS-encoded particles. Cancer Nanotechnology 2017, 8 (1), 1-24.
10. Okada, M.; Smith, N. I.; Palonpon, A. F.; Endo, H.; Kawata, S.; Sodeoka, M.; Fujita, K., Label-free Raman observation of cytochrome c dynamics during apoptosis. Proceedings of the National Academy of Sciences 2012, 109 (1), 28-32.
11. Jatana, S.; Palmer, B. C.; Phelan, S. J.; Gelein, R.; DeLouise, L. A., In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation. Particle and fibre toxicology 2017, 14 (1), 1-14.
12. Valente, K. P.; Suleman, A.; Brolo, A. G., Exploring Diffusion and Cellular Uptake: Charged Gold Nanoparticles in an in Vitro Breast Cancer Model. ACS Applied Bio Materials 2020, 3 (10), 6992-7002.
13. Wu, M.; Chen, L.; Li, R.; Dan, M.; Liu, H.; Wang, X.; Wu, X.; Liu, Y.; Xu, L.; Xie, L., Bio-distribution and bio-availability of silver and gold in rat tissues with silver/gold nanorod administration. RSC advances 2018, 8 (22), 12260-12268.
14. Vojtek, M.; Pinto, E.; Gonçalves-Monteiro, S.; Almeida, A.; Marques, M.; Mota-Filipe, H.; Ferreira, I. M.; Diniz, C., Fast and reliable ICP-MS quantification of palladium and platinum-based drugs in animal pharmacokinetic and biodistribution studies. Analytical Methods 2020, 12 (39), 4806-4812.
15. Reuveni, T.; Motiei, M.; Romman, Z.; Popovtzer, A.; Popovtzer, R., Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. International journal of nanomedicine 2011, 6, 2859.
16. Li, E.; Yang, Y.; Hao, G.; Yi, X.; Zhang, S.; Pan, Y.; Xing, B.; Gao, M., Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics 2018, 2 (3), 233.
17. Pautler, R. G., Mouse MRI: concepts and applications in physiology. Physiology 2004, 19 (4), 168-175.
18. Babalola, O.; Mamalis, A.; Lev-Tov, H.; Jagdeo, J., Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis. Archives of dermatological research 2014, 306 (1), 1-9.
19. Dai, Y.; Huang, J.; Xiang, B.; Zhu, H.; He, C., Antiproliferative and Apoptosis Triggering Potential of Paclitaxel-Based Targeted-Lipid Nanoparticles with Enhanced Cellular Internalization by Transferrin Receptors—a Study in Leukemia Cells. Nanoscale research letters 2018, 13 (1), 1-9.
20. Weissleder, R., A clearer vision for in vivo imaging. Nature biotechnology 2001, 19 (4), 316-317.
21. Ding, B.; Xiao, Y.; Zhou, H.; Zhang, X.; Qu, C.; Xu, F.; Deng, Z.; Cheng, Z.; Hong, X., Polymethine thiopyrylium fluorophores with absorption beyond 1000 nm for biological imaging in the second near-infrared subwindow. Journal of medicinal chemistry 2018, 62 (4), 2049-2059.
22. Liu, Y.; Liu, J.; Chen, D.; Wang, X.; Liu, Z.; Liu, H.; Jiang, L.; Wu, C.; Zou, Y., Quinoxaline-based semiconducting polymer dots for in vivo NIR-II fluorescence imaging. Macromolecules 2019, 52 (15), 5735-5740.
23. Pal, S.; Ray, A.; Andreou, C.; Zhou, Y.; Rakshit, T.; Wlodarczyk, M.; Maeda, M.; Toledo-Crow, R.; Berisha, N.; Yang, J., DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nature communications 2019, 10 (1), 1-13.
24. Zhang, Y.; Gu, Y.; He, J.; Thackray, B. D.; Ye, J., Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nature communications 2019, 10 (1), 1-12.
25. Li, L.; Liao, M.; Chen, Y.; Shan, B.; Li, M., Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells. Journal of Materials Chemistry B 2019, 7 (5), 815-822.
26. Uzunbajakava, N.; Lenferink, A.; Kraan, Y.; Willekens, B.; Vrensen, G.; Greve, J.; Otto, C., Nonresonant Raman imaging of protein distribution in single human cells. Biopolymers: Original Research on Biomolecules 2003, 72 (1), 1-9.
27. Uzunbajakava, N.; Lenferink, A.; Kraan, Y.; Volokhina, E.; Vrensen, G.; Greve, J.; Otto, C., Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophysical journal 2003, 84 (6), 3968-3981.
28. Huang, Y. S.; Karashima, T.; Yamamoto, M.; Ogura, T.; Hamaguchi, H. o., Raman spectroscopic signature of life in a living yeast cell. Journal of Raman Spectroscopy 2004, 35 (7), 525-526.
29. Palonpon, A. F.; Sodeoka, M.; Fujita, K., Molecular imaging of live cells by Raman microscopy. Current opinion in chemical biology 2013, 17 (4), 708-715.
30. Koike, K.; Bando, K.; Ando, J.; Yamakoshi, H.; Terayama, N.; Dodo, K.; Smith, N. I.; Sodeoka, M.; Fujita, K., Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy. ACS nano 2020, 14 (11), 15032-15041.
31. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters 1974, 26 (2), 163-166.
32. Zhai, Z.; Zhang, F.; Chen, X.; Zhong, J.; Liu, G.; Tian, Y.; Huang, Q., Uptake of silver nanoparticles by DHA-treated cancer cells examined by surface-enhanced Raman spectroscopy in a microfluidic chip. Lab on a Chip 2017, 17 (7), 1306-1313.
33. Ravanshad, R.; Karimi Zadeh, A.; Amani, A. M.; Mousavi, S. M.; Hashemi, S. A.; Savar Dashtaki, A.; Mirzaei, E.; Zare, B., Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano reviews & experiments 2018, 9 (1), 1373551.
34. He, X.-N.; Wang, Y.-N.; Wang, Y.; Xu, Z.-R., Accurate quantitative detection of cell surface sialic acids with a background-free SERS probe. Talanta 2020, 209, 120579.
35. Hanif, S.; Liu, H.-L.; Ahmed, S. A.; Yang, J.-M.; Zhou, Y.; Pang, J.; Ji, L.-N.; Xia, X.-H.; Wang, K., Nanopipette-based SERS aptasensor for subcellular localization of cancer biomarker in single cells. Analytical chemistry 2017, 89 (18), 9911-9917.
36. Chen, Y.; Bai, X.; Su, L.; Du, Z.; Shen, A.; Materny, A.; Hu, J., Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging. Scientific reports 2016, 6 (1), 1-12.
37. Tian, Y.-F.; Ning, C.-F.; He, F.; Yin, B.-C.; Ye, B.-C., Highly sensitive detection of exosomes by SERS using gold nanostar@ Raman reporter@ nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor. Analyst 2018, 143 (20), 4915-4922.
38. Jehn, C.; Küstner, B.; Adam, P.; Marx, A.; Ströbel, P.; Schmuck, C.; Schlücker, S., Water soluble SERS labels comprising a SAM with dual spacers for controlled bioconjugation. Physical Chemistry Chemical Physics 2009, 11 (34), 7499-7504.
39. Nguyen, T. D.; Song, M. S.; Ly, N. H.; Lee, S. Y.; Joo, S. W., Nanostars on nanopipette tips: A Raman probe for quantifying oxygen levels in hypoxic single cells and tumours. Angewandte Chemie 2019, 131 (9), 2736-2740.
40. Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H.-L., Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific reports 2013, 3 (1), 1-6.
41. Bando, K.; Zhang, Z.; Graham, D.; Faulds, K.; Fujita, K.; Kawata, S., Dynamic pH measurements of intracellular pathways using nano-plasmonic assemblies. Analyst 2020, 145 (17), 5768-5775.
42. Ock, K.; Jeon, W. I.; Ganbold, E. O.; Kim, M.; Park, J.; Seo, J. H.; Cho, K.; Joo, S.-W.; Lee, S. Y., Real-time monitoring of glutathione-triggered thiopurine anticancer drug release in live cells investigated by surface-enhanced Raman scattering. Analytical chemistry 2012, 84 (5), 2172-2178.
43. El-Said, W. A.; Yoon, J.; Choi, J.-W., Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools. Nano convergence 2018, 5 (1), 1-19.
44. Ock, K.-S.; Ganbold, E. O.; Park, J.; Cho, K.; Joo, S.-W.; Lee, S. Y., Label-free Raman spectroscopy for accessing intracellular anticancer drug release on gold nanoparticles. Analyst 2012, 137 (12), 2852-2859.
45. Qi, G.; Zhang, Y.; Xu, S.; Li, C.; Wang, D.; Li, H.; Jin, Y., Nucleus and mitochondria targeting theranostic plasmonic surface-enhanced Raman spectroscopy nanoprobes as a means for revealing molecular stress response differences in hyperthermia cell death between cancerous and normal cells. Analytical chemistry 2018, 90 (22), 13356-13364.
46. Matsson, P.; Kihlberg, J., How big is too big for cell permeability? ACS Publications: 2017.
47. Bakola, V.; Karagkiozaki, V.; Tsiapla, A.; Pappa, F.; Moutsios, I.; Pavlidou, E.; Logothetidis, S., Dipyridamole-loaded biodegradable PLA nanoplatforms as coatings for cardiovascular stents. Nanotechnology 2018, 29 (27), 275101.
48. Pérez-Jiménez, A. I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B., Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chemical science 2020, 11 (18), 4563-4577.
49. Wang, B.; Wang, Y.; Wu, H.; Song, X.; Guo, X.; Zhang, D.; Ma, X.; Tan, M., A mitochondria-targeted fluorescent probe based on TPP-conjugated carbon dots for both one-and two-photon fluorescence cell imaging. Rsc Advances 2014, 4 (91), 49960-49963.