簡易檢索 / 詳目顯示

研究生: 潘世文
Pan, Shi-Wen
論文名稱: 混合基因演算法與蟻群最佳化模糊控制器之設計
A Hybrid of Genetic Algorithm and Ant Colony Optimization for Fuzzy controller Design
指導教授: 何裕琨
Ho, Yu-Kun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 58
中文關鍵詞: 模糊控制類神經模糊網路基因演算法螞蟻群最佳化演算法
外文關鍵詞: fuzzy controller, neural fuzzy network, genetic algorithm, ant colony optimization
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自動模糊系統之設計上尋找類神經模糊控制系統(Neural Fuzzy Systems,NFS) 後部值(Consequent values,CV)的組合是一個最佳化的問題(Optimization Problem),已有許多相關研究使用不同技術來求解此最佳化之問題。其中蟻群最佳演算法(Ant Colony Optimization Algorithm,ACO),在最佳化的解題上具有收斂快速的表現,但此快速收斂容易落入較差的局部區域(Local optima)解中。而求解最佳化問題常用之基因演算法(Genetic Algorithm,GA),雖然編碼靈活、廣域搜尋能力較佳、較不落入區域解特性、應用廣泛,但它的執行效率上郤較ACO為差,因須花費較多的執行時間來做細部之搜尋。若能將此二演算法混合,各取其優點,將是一個值得研究的問題。
    本論文結合基因演算法與蟻群最佳化二演算法提出了一個混合基因演算法與蟻群最佳化類神經模糊控制器之設計法,主要的目的是將基因演算法廣域搜尋與蟻群最佳化的收斂快速和細部搜尋能力之優點相結合,使得當蟻群最佳化演算法在收斂落入較差的區域解時基因演算法可以演化出較好的解來取代較差的區域解,因而在模糊控制器的後部值最佳化之問題上能得到更精準和穏定之解答。
    在驗證方面,本論文使用之混合基因演算法與蟻群最佳化在類神經模糊控制系統上,能找出類神經模糊控制系統最佳的後部值之組合。而本論文所提出的演算法和其它演算法做比較,可以驗證本論文所提出的演算法比其它演算法得到之解更精準。

    Searching for the combination of consequent values of neural fuzzy systems in automatic fuzzy system design is a Optimization Problem .And there are a lots of solutions method for it. The ant colony optimization algorithm(ACO) has a good performance on convergent but it is easy to get the local optima. In addition, the solution optimization problem uses genetic algorithm (GA)usually because genetic algorithm has a good capability of global searching but it`s performance is lower than ACO. If we can combine GA and ACO to take their advantages it will be a good problem to study.
    In this paper, we propose the combination of GA and ACO method. The Objective is to consolidate global search of GA and local search of ACO. The solution from ACO is replaced by the best solution from GA evolution when ACO convergent to local optima, let Consequent values of fuzzy controller be accurate and stable.
    This paper uses a hybrid of genetic algorithm and ant colony optimization for fuzzy controller in simulation. We search for problem consequent values of neural fuzzy. we will compare with other different algorithm finally.

    第一章 緒論……………………………………………………1 1.1背景及動機……………………………………………………1 1.2研究目的………………………………………………………4 1.3本論文架構……………………………………………………4 第二章 相關研究探討…………………………………………5 2.1模糊控制器(Fuzzy control,FC)…………………………………………5 2.1.1設計模糊控制器的原則……………………………………5 2.2類神經模糊控制器(Neural Fuzzy Controller,NFC)7 2.2.1類神經模糊控制器(Neural Fuzzy Controller,NFC)11 2.3 蟻群最佳化(Ant Colony Optimization,ACO) …………14 2.3.1 蟻群演算法的運作…………………………………………16 2.3.1.1 蟻群最佳化演算法的步驟………………………………16 2.4..1.2蟻群最佳化演算法使用於類神經模糊控制器[1]…………18 2.4基因演算法(Genetic Algorithm,GA) ………………………………21 2.4.1基因運算法的運作……………………………………………21 2.5基因演算法與粒子天鵝最佳化的混合於遞迴網路設計[11](A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design,HGAPSO) …………………………………………25 第三章 混合基因演算法與蟻群最佳化類神經模糊控制器設計(A Hybrid of Genetic Algorithm and Ant Colony Optimization for Neura Fuzzy Controller De sign)…………………………………………………………………29 3.1混合基因蟻群最佳化演算法模糊控制架構………………………30 3.2混合基因蟻群最佳化演算法………………………………………39 3.3混合基因蟻群最佳化演算法在水溫控制之例子…………………41 第四章 實驗和結果分析……………………………………………50 4.1 實驗設計…………………………………………………………50 4.2實驗與比較…………………………………………………………50 4.2.1 實驗設計 ……………………………………………………50 4.2.2水溫模糊控制之結果比較………………………………………51 第五章 結論與未來研究…………………………………………………………55 參考文獻…………………………………………………………………56

    [1] Chia-Feng Juang, Member,IEEE, Chun-Ming Lu, Chiang Lo, and Chi-Yen Wang ,”Ant Colony Optimization Algorithm for Fuzzy Controller Design and Its FPGA Implementation” IEEE Transactions on Industrial Electronics, vol.55, No 3, pp1453-1462, MARCH,2008.

    [2] K. M. Sim and W. H. Sun, “Ant colony optimization for routing and loadbalancing:Survey and new directions,”IEEE Trans.Syst.,Man,Cybern.A,Syst,Humans, vol. 33, no. 5, pp. 560–572, Sep. 2003.

    [3] M. Dorigo and T. Stützle,”Ant Colony Optimization” Cambridge, MA:MIT, Jul. 2004.

    [4]Larranaga,P. et.al,”Genetic Algorithm for the Traveling Salesman Problem:A Review of Representation and Operators”Artificial Intelligence Review,Vol.13,No.2, 1999,pp. 129-170.

    [5]Or,I.,”Traveling salesman-type combinatiorial Problems and Their Realation on the logistics of regional Blood Banking ,”Ph.D.Thesis,Department of Industrial Engineering and Management Sciences,Northwestern University,Evanston IL,1976.

    [6] Jack Edmonds”Matroids and the greedy algorithm” Mathematical Programming,vol 1,Number 1,1971

    [7]L.A.Zadeh”Fuzzy Sets”,Information and Contro,Vol. 8.pp.338-353.1965.

    [8]K. M. Sim and W. H. Sun, “Ant colony optimization for routing and loadbalancing:Survey and new directions,”IEEE Trans.Syst.,Man,Cybern.A,Syst.,Humans, vol. 33, no. 5, pp. 560–572, Sep. 2003.

    [9] M. Dorigo and T. Stützle,Ant Colony Optimization. Cambridge, MA:MIT, Jul. 2004.

    [10] M. Dorigo and V. Maniezzo, “The Ant System:Optimization by a colony of cooperating agents”.IEEE Trans on systems,vol., vol. 26,pp. 1–13. Jul.1996,

    [11]C. F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for recurrent network design,”IEEE Trans.Syst.,Man,Cybern.B,Cybern., vol. 34, no. 2, pp. 997–1006, Apr. 2004.

    [12]J. Cassillas, O. Cordon, and F. Herrera, “Learning fuzzy rules using ant colony optimization algorithms,” in Proc.2nd Workshop Ant algorithm.Sep. 2000, pp. 13–21.

    [13]B. Scheuermann, K. So, M. Guntsch, M. Middendorf, O. Diessel,H. ElGindy, and H. Schmeck, “FPGA implementation of populationbased ant colony optimization,”Appl.Soft Comput.,vol.4,no.3,pp.303-322,Aug.2004.

    [14] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a colony of cooperating agents,”IEEE Trans.Syst.,Man,Cybern.B,Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

    [15] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning approach to the traveling salesman problem,”IEEE Trans.Evol.Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

    [16]S. Jung and S. S. Kim, “Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems,” IEEE Trans.Ind,Electron. vol. 54, no. 1, pp. 265–271, Feb. 2007.

    [17] T. H. S. Li, S. J. Chang, and Y. X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,”IEEE Trans.Ind.Electron., vol. 50, no. 5, pp. 867–880, Oct. 2003.

    [18] C. F. Juang and J. S. Chen, “Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation,” IEEE Trans.Ind.Electron, vol. 53, no. 3, pp. 941–949, Jun. 2006.

    [19] C. F. Juang and C. H. Hsu, “Temperature control by chip-implemented adaptive recurrent fuzzy controller designed by evolutionary algorithm,” IEEE Trans.Circuits Syst.IReg.Pagers, vol. 25, no. 11, pp. 2376–2384,Nov. 2005.

    [20]Eberhart,R.C. and kennedy,J.,”A new optimizer using particles swarm theory”Proceedings of the 1995 IEEE Inernational Conference on Neural Networks.vol.4,1995,pp.1942-48

    [21]C.T.Lin and C.S.G.Lee,Neural Fuzzy Systems:A Neural-Fuzzy synergism to intelligent systems.Englewood cliffs,NJ:Prentice-Hali,May 1996.

    [22]Jh Holland.”Optimization of Control Parameters for Genetic Algorithms”
    IEEE Trans.Syst.,Man,Cybern.B,Cybern., vol. 34, no. 2, pp. 122–128, Apr. 1986.

    [23] Talbi, E-G. Metaheuristics: from design to implementation. Wiley.(2009)

    [24] Fred Glover and Gary A. Kochenberger: Handbook of Metaheuristics. International Series in Operations Research & Management Science, Vol. 57, Springer, 2003.

    [25] G. Gutin, A. Yeo and A. Zverovich, “Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP”. Discrete Applied Mathematics 117 .2002.

    [26] Ivan Vilovic,Niksa Burum,Zvonimir Sipus and Robert Nad”PSO and ACOO Algorithms Applied to Bocation Optimization of the WLAN Base Station”conference Proceeding –ICECom2007,19th international Conference on Applied Electromagnetics and Communication .vol.4,2007,pp.1942-46

    下載圖示 校內:2012-09-01公開
    校外:2013-09-01公開
    QR CODE