簡易檢索 / 詳目顯示

研究生: 胡文品
Hu, Wen-Pin
論文名稱: 應用表面電漿感測器於生物分子作用之動力學研究和構形分析
Kinetics study and conformation analysis of biomolecular interactions by applying surface plasmonic sensors
指導教授: 張冠諒
Chang, Guan-Liang
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 119
中文關鍵詞: 表面電漿共振影像系統量測多點DNA晶片製作β型類澱粉胜肽聚集動力學分析免疫檢測C反應蛋白表面電漿生醫感測器
外文關鍵詞: SPR imaging, DNA chip, Immnuodetection, Kinetics analysis, C-reactive protein, β-amyloid peptide, Surface plasmon resonance
相關次數: 點閱:164下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在表面電漿共振感測器之感測表面上,進行適當的處理程序以固定生物分子,可擴展此量測技術於生醫之應用範圍。β型類澱粉胜肽的聚集、C反應蛋白的免疫偵測和多點DNA晶片,在搭配表面電漿共振生醫感測或影像系統的使用下進行評估與量測,是本論文主要研究的三種生醫感測應用。第一個研究目的是觀測β型類澱粉胜肽的自我聚集,與在金屬離子誘導下的聚集反應。C反應蛋白的免疫量測目的是設計表面電漿共振生醫感測器於五元體與單體C反應蛋白的辨識量測,以獲得更準確的量測結果。最後一個研究目的是提出一種製作多點DNA晶片的實用方法,並將晶片用於表面電漿共振影像系統的量測中。
    為了研究β型類澱粉胜肽(1-40)聚集,可溶性的類澱粉胜肽首先被固定在表面電漿共振感測片的表面上,在自然或在金屬離子的誘導下觀測聚集的反應。動力學參數是使用一階動力學模型分析資料後取得。金屬離子螯合劑EDTA 也用在實驗量測中,以測試此螯合劑對金屬離子誘導生成之β型類澱粉胜肽聚集物的破壞效果。結果顯示β型類澱粉胜肽的聚集在金屬離子的誘導下表現出多種不同的傾向。二價銅離子可以誘導β型類澱粉胜肽產生最快速的初期聚集反應,但卻不能促進大型β型類澱粉胜肽聚集物的產生。金屬離子螯合劑EDTA可破壞經金屬離子誘導生成的β型類澱粉胜肽聚集物。
    在C反應蛋白的免疫偵測中,為了使固定在感測表面之抗體皆能排列整齊,三種單株抗體(C8, 8D8, 9C9)都透過蛋白G而被固定在感測表面上。實驗量測結果顯示,表面電漿共振生醫感測器於辨識單體與五元體的C反應蛋白上,具有高準確度。在多點DNA晶片的量測上,在晶片的製作過程中,直接使用以短序列的硫醇化單股DNA(1 μM)和oligo (ethylene glycol) (OEG)(50 μM)硫醇混合在磷酸二氫鉀內的溶液。商業化的軟體Oligo則應用於計算DNA二級結構形成的可能性。DNA雜交實驗則在兩種不同溫度下進行,以了解溫度對雜交的影響。依據在表面電漿共振影像系統進行的量測,結果證實此種多點DNA晶片製作方法的可行性。DNA二級結構對於雜交的影響程度,則可由提升實驗溫度來減少。
    表面電漿共振檢測技術之量測結果,容易受到感測表面的化學修飾或採取的生物分子固定方法的影響。在此研究中所使用的幾項方法,成功地順利完成實驗的量測,也可應用於其他生物分子的量測中。本論文中的表面電漿共振檢測技術應用成果,將可提供其他研究者在使用此技術進行生醫檢測時的參考。

    With the suitable immobilizations of biomolecules on the sensing surface of surface plasmon resonance (SPR) sensors, they can be extended as useful tools in the studies of biomolecular interactions. In this dissertation, the study of β-amyloid (Aβ) peptide aggregation, the immunodetection of C-reactive protein (CRP), and the fabrication of a multispot DNA chip were evaluated by the SPR sensing or imaging techniques which constructed the three specific applications. The aim of first application is to observe the process of Aβ aggregation with or without the existence of metal ions. The immunodetection of CRP is to employ SPR biosensor in the measurement of pentamer and modified CRPs with less false signals. Finally, a practical method to fabricate a multispot DNA chip is proposed and evaluated by a SPR imager.
    Soluble Aβ(1-40) peptide is immobilized on the surface of SPR chip and the aggregating reaction occurs spontaneously or under the induction of metal ions. A first-order kinetics model is applied to analysis the data for getting the kinetic parameters. A metal chelator, EDTA, is used in the experiments for testing its effect on the disruption of Aβ aggregates induced by metal ions. Results revealed the metal ions promoted Aβ aggregation with various propensities. Cu(II) could induce a rapidest initial Aβ aggregation, but it did not promote the formation of large Aβ aggregates. The Aβ aggregates induced by metal ions could be disrupted by the chelator, EDTA.
    For constructing surface with a well-order immobilization of antibodies, the three monoclonal antibodies (Mabs), C8, 8D8, and 9C9 are immobilized on a protein G layer in the immunodetection of CRP. In all experiments of detecting CRP, no false results were observed in the recognition of modified and pentamer CRPs. In order to prepare a multispot DNA chip, thiolated single-stranded DNAs (ssDNAs) (1 μM) with short sequences and oligo (ethylene glycol) (OEG) alkanethiol (50 μM) mixed in 1 M KH2PO4 is used to spot on the SPR sensing chip. The commercial program, Oligo, is applied to calculate of possibility on formation of DNA secondary structure. The experiments of DNA hybridization are performed at two different temperatures for interpreting the effect of temperature on DNA hybridization. According to the results from the DNA hybridizing experiments evaluated on the SPR imaging system, the fabrication method for making a multispot DNA chip was proved its feasibility. The effect of DNA secondary structure on hybridization was verified that could be minimized by raising experimental temperature.
    The experimental resluts obtained from the SPR techniques are easily affected by chemical surface modifications and biomolecular immobilizations on the sensing surface. The several methods used in this dissertation are successfully applied in the experiments, and they also can be used in other biomolecular detections. The experimental results can provide the useful examples of applying SPR techniques in the biomedical examinations to other related researchers.

    Chapter 1. Introduction 1 1.1 Modern Biosensors 1 1.2 Surface Plasmon Resonance Technique 3 1.2.1 Typical SPR Instrument 9 1.2.2 SPR Imaging System 10 1.3 Motivations and Objectives 11 1.4 Research Framework of the Dissertation 13 1.5 Applications 14 1.5.1 β-amyloid Peptide Aggregation 14 1.5.2 Immunodetection of C-reactive Protein (CRP) 16 1.5.3 DNA array 19 1.6 Organization 22 Chapter 2. Principles of SPR Biosensors 24 2.1 Dispersion Relation of Surface Plamons 24 2.2 Spatial Extension of the SP Fields and Propagation of the SPs 28 2.3 Excitation of Surface Plasmons by Light 29 2.4 Reflectivity of the Prism Coupling 33 2.5 SPs on a Thin Film 36 2.6 Immobilization Strategies for Biomolecules 39 2.6.1 Protein Adsorption 39 2.6.2 Covalent Binding 40 2.6.2.1 Immobilization via Bio-specific Reaction 42 2.6.2.2 Immobilization via DNA Hybridization 43 2.6.3 Dextran 43 Chapter 3. Materials and Methods 45 3.1 Investigation of β-amyloid Peptide Aggregation 45 3.1.1 Reagents and Aβ Sample Preparation 45 3.1.2 Conditions for Experiments 46 3.1.3 Immobilization of Aβ Peptide 46 3.1.4 Kinetics Model 48 3.2 Immunosensing Pentamer and Modified CRP 48 3.2.1 Materials 48 3.2.2 Conditions for the SPR Measurement 51 3.2.3 The Immobilizations of Protein G and Mabs 51 3.2.4 Measurements of pCRP and mCRP 54 3.3 Multispot DNA Chip and the DNA Hybridization 54 3.3.1 Reagents 54 3.3.2 Calculation of DNA Secondary Structure 55 3.3.3 Arraying Approach for Making a Multispot DNA Chip 56 3.3.4 The Procedures of Experiments 59 Chapter 4. Results and Discussion 60 4.1 Observations of Aβ Aggregations 60 4.1.1 Control and Anti-Aβ Antibody Binding Assays 60 4.1.2 Aggregation of Aβ Peptides under the Presence of Metal Ions 63 4.1.3 Kinetic Analysis of Aβ Peptide Aggregation 69 4.1.4 Effect of EDTA on Metal Ion-induced Aβ Aggregations 70 4.1.5 Discussion 72 4.2 The Specific Recognition for Sensing Pentamer and Modified CRP 76 4.2.1 Chemical Immobilization of Mab C8 for Detecting pCRP 76 4.2.2 Immobilization of Protein G 78 4.2.3 Immobilization of Mabs 79 4.2.4 Recognition of pCRP and mCRP 80 4.2.5 Detection Limitation of SPR Technique for CRP 84 4.2.6 Discussion of Results for the CRP 85 4.3 DNA Experiments Performed by Using the Multispot DNA Chip 88 4.3.1 Fabrication of a Multispot DNA Chip 88 4.3.2 The Prediction of DNA Secondary Structure 89 4.3.3 Control Experiments at Two Temperatures 90 4.3.4 Hybridization Reactions of Target c-B and c-C at Two Temperatures 94 4.3.5 Discussion on Fabrication of DNA Spots on SPR Chip 98 Chapter 5. Conclusion and Recommendations 100 5.1 Summary 100 5.2 Recommendations and Perspectives 102 References 105

    1. Huang, G.S., Wang, M.-T., Hong, M.-Y., 2006. A versatile QCM matrix system for online and high-throughput bio-sensing. Analyst. 131, 382-387.
    2. Yang, J., Chen, Q., Zheng, X., 2006. Fabrication of a chemosensor array on a microfluidic device by a simple gel-based method. Sens. Actuat. B 115, 309-315.
    3. Bassil, N., Maillart, E., Canva, M., Levy, Y., Millot, M.C., Pissard, S., Narwa, W., Goossens, M., 2003. One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations. Sens. Actuat. B 94, 313-323.
    4. Ghindilis, A.L., Atanasov, P., Wilkins, M., Wilkins, E., 1998. Immunosensors: Electrochemical sensing and other engineering approaches. Biosens. Bioelectron. 13, 113-131
    5. Chu, X., Lin, Z.H., Shen, G.L., Yu, R.Q.M., 1995. Piezoelectric immunosensor for the detection of immunoglobulin M. Analyst. 120, 2829-2832.
    6. Gauglitz, G., 1996. Opto-chemical and Opto-immuno Sensors, Sensor Update, vol 1. VCH, Weinheim.
    7. Piehler, J., Brecht, A., Gauglitz, G., 1996. Affinity detection of low molecular weight analytes. Anal. Chem. 68, 139-143.
    8. Clerc, D., Lukosz, W., 1994. Integrated optical output grating coupler as bio- chemical sensor. Sens. Actuat. B 19, 581-586.
    9. Cush, R., Cronin, J.M., Stewart, W.J., Maule, C.H., Molloy, J., Goddard, N.J., 1993. The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. : Part I: principle of operation and associated instrumentation. Biosens. Bioelectron. 8, 347-353.
    10. Homola, J., Yee, S.S., Gauglitz, G., 1999. Surface plasmon resonance sensors: review. Sens. Actuat. B 54, 3–15.
    11. Ritchie, R.H., 1957. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874.
    12. Powell, C.J., Swan, J.B., 1960. Effect of oxidation on the characteristics loss spectra of aluminum and magnesium. Phys. Rev. 118, 640.
    13. Otto, A., 1968. Excitation of non-radiative surface plasma waves in silver by method of frustrated total reflection. Z. Phys. 23a, 398-410.
    14. Liedberg, B., Nylander, C., Lundsr, I., 1983. Surface plasmon resonance for gas detection and biosensing. Sens. Actuat. B 4, 299-304.
    15. Jönsson, U., Fägerstam, L., Ivarsson, B. et al., 1991. Real-time biospecific inter- action analysis using surface plasmon resonance and a sensor chip technology. Biotechniques. 11, 620-627.
    16. McDonnell, J.M., 2001. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5, 572-577.
    17. Homola, J., 2003. Present and feture of surface plasmon resonance biosensor. Anal. Bioanal. Chem. 377, 528-539.
    18. Stenberg, E., Persson, B., Roos, H., Uraniczky, C., 1991. Quantitative determination of surface concentration of proteins with surface plasmon resonance using radiolabeled protein. J. Colloid. Interf. Sci. 143, 513-526.
    19. Su, Y.-D., Chen, S.-J., 2005. Common-path phase-shift interferometry surface plasmon resonance imaging system. Opt. lett. 30, 1488-1490.
    20. Hu, W.P., Chen, S.-J., Huang, K.-T., Hsu, J.H., Chen, W.Y., Chang, G.L., Lai, K.-A., 2004. A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film. Biosens. Bioelectron. 19, 1465-1471.
    21. Institut für Physikalische Biologie, http://www.biophys.uni-duesseldorf.de/
    22. Glenner, G.G., Wong, C.W., 1984. Alzheimer disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun.122, 1131–1135.
    23. Masters, C.L., Simms, G., Weiman, N.A., Multhaup, G., McDonald, B.L., Beyreu- ther, K., 1985. Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc. Natl. Acad. Sci. 82, 4245-4249.
    24. Koo, E.H., Sisodia, S.S., Archer, D.R., Martin, L.J., Weidemann. A., Beyreuther, K., et al., 1990. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc. Natl. Acad. Sci. 87, 1561-1565.
    25. Oyama, F., Shimada, H., Oyama, R., Titani, K., Ihara, Y., 1991. Differential expression of β amyloid protein precursor (APP) and tau in the aged human brain: individual variability and correlation between APP-751 and four-repeat tau. J. Neuropathol. Exp. Neurol. 50, 560-578.
    26. Oyama, F,, Shimada, H., Oyama, R., Titani, K., Ihara, Y., 1993. β-Amyloid protein precursor and T mRNA levels versus β-amyloid plaque and neurofibrillary tangles in the aged human brain. J. Neurochem. 60, 1658-1664.
    27. Selkoe, D.J., 2001. Alzheimer’s disease: genes, proteins and therapy. Physiol. Rev. 81, 741- 766.
    28. Coria, F., Castano, E., Prelli, F., Larrondo-Lillo, M., Van Duinen, S., Shelanski, M.L., et al., 1988. Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab. Invest. 58, 454-458.
    29. Rogers, J., Cooper, N.R., Webster, S., Schultz, J., McGeer, P.L., Styren, S.D., et al., 1992. Complement activation by beta-amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. 89, 10016-10020.
    30. Ma, J., Yee, A., Brewer, Jr. H.B., Das, S., Potter, H., 1994. Amyloid-associated proteins alpha1- antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372, 92–94.
    31. Schwarzman, A.L., Gregori, L., Vitek, M.P., Lyubski, S., Strittmatter, W.J., Enghilde, J.J., et al, 1994. Transthyretin sequesters amyloid β protein and prevents amyloid formation. Proc. Natl. Acad. Sci. 91, 8368–8372.
    32. Snow, A.D., Sekiguchi, R., Nochlin, D., Fraser, P., Kimata, K., Mizutani, A., Arai, M., Schreier, W.A., Morgan, D.G., 1994. An important role of heparan sulfate proteoglycan (perlecan) in a model system for the deposition and persistence of fibrillar Aβ-amyloid in rat brain. Neuron. 12, 219-234.
    33. Eriksson, S., Janciauskiene, S., Lannfelt, L., 1995. Alpha 1-antichymotrypsin regulates Alzheimer beta-amyloid peptide fibril formation. Proc. Natl. Acad. Sci. 92, 2313-2317.
    34. Zlokovic, B.V., Martel, C.L., Matsubara, E., McComb, J.G., Zheng, G., McCluskey, R.T., et al., 1996. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid β at the blood–brain and blood–cerebrospinal fluid barriers. Proc. Natl. Acad. Sci. 93, 4229-4234.
    35. Wu, C.W., Liao, P.C., Yu, L., Wang, S.T., Chen, S.T., Wu, C.M., Kuo, Y.M., 2004. Hemoglobin promotes Aβ oligomer formation and localizes in neurons and amyloid deposits. Neurobiol. Dis. 17, 367-377.
    36. Bush, A.I., Multhauo, G., Moir, R.D., Willamson, T.G., Small, D.H., Rumble, B., Pollwein, P., Beyreuther, K., Masters, C.L.,1993. A novel zinc(II) binding site modulates the function of the beta Aβ amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem. 268, 16109-16112.
    37. Bush, A.I., Pettingell, W.H., Multhaup, G., Paradis, M., Vonsattel, J.P., Gusella, J.F., Beyreuther, K., Masters, C.L., Tanzi, R.E., 1994. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 265, 1464-1467.
    38. Rottkamp, C.A., Raina, A.K., Zhu, X., Gaier, E., Bush, A.I., Atwood, C.S., Chevion, M., Perry, G., Smith, M.A., 2001. Redox-active iron mediates amyloid-β toxicity. Free. Radic. Biol. Med. 30, 447-450.
    39. Lovell, M.A., Roberson, J.D., Teesdate, W.J., Campbell, J.L., Markesbery, W.R., 1998. Copper, iron and zine in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47-52.
    40. Suh, S.W., Jensen, K.B., Jensen, M.S., Silva, D.S., Kesslak, P.J., Danscher, G., Frederickson, C.J., 2000. Histochemically- reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain. Res. 852, 274–278.
    41. Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N., Jones, W.D., McLean, C.A., Barnham, K.J., Volitakis, I., Fraser, F.W., Kim, Y., Huang, X., Goldstein, L.E., Moir, R.D., Lim, J.T., Beyreuther, K., Zheng, H., Tanzi, R.E., Masters, C.L., Bush, A.I., 2001. Treatment with a copper–zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 30, 665–676.
    42. Cherny, R.A., Legg, J.T., McLean, C.A., Fairlie, D.P., Huang, X., Atwood, C.S., Beyreuther, K.; Tanzi, R.E.; Masters, C.L.; Bush, A.I., 1999. Aqueous dissolution of Alzheimer’s disease Aβ amyloid deposits by biometal depletion. J. Biol. Chem. 274, 23223-23228.
    43. Chien, F.-C., Chen, S.-J., 2004. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosens. Bioelectron. 20, 633-642.
    44. Haes, A.J., Hall, W.P., Chang, L., Klein, W.L., Van Duyne, R.P., 2004. A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett. 4, 1029-1034.
    45. Hasegawa, K., Ono, K., Yamada, M., Naiki, H., 2002. Kinetic modeling and deter- mination of reaction constants of Alzheimer’s β-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry. 41, 13489-13498.
    46. Cannon, M.J., Williams, A.D., Wetzel, R., Myszka, D.G., 2004. Kinetic analysis of beta-amyloid fibril elongation. Anal. Biochem. 328, 67-75.
    47. Ridker, P.M., Cushman, M., Stampfer, M.J., Tracy, R.P., Hennekens, C.H., 1997. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973-979.
    48. Ridker, P.M., Cushman, M., Stampfer, M.J., Tracy, R.P., Hennekens, C.H., 1998. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation. 97, 425-428.
    49. Ridker, P.M., Hennekens, C.H., Buring, J.E., Rifai, N., 2000. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836-843.
    50. Koenig, W., Sund, M., Frohlich, M., Fisher, H.G., Lowel, H., Doring, A., Hutch- inson, W.L., 1999. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 99, 237-242.
    51. Li, J.J., Fang, C.H., 2004. C-reactive is not an only inflammatory marker but also a direct cause of cardiovascular diseases. Med. Hypotheses. 62, 499-506.
    52. Ross, R., 1999. Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 340, 115-126.
    53. Verma, S., Yeh, E.T., 2003. C-reactive protein and atherothrombosis--Beyond a biomarker: an actual partaker of lesion formation. Am. J. Physiol. 285, R1253-1256.
    54. Pepys, M.B., Hirschfield, G.M., 2003. C-reactive protein: a critical update. J. Clin. Invest. 111, 1805-1812.
    55. Xia, D., Samols, D., 1997. Transgenic mice expressing rabbit C-reactive protein (CRP) are resistant to endotoxemia. Proc. Natl. Acad. Sci. 94, 2575-2580.
    56. Griselli, M., Herbert, J., Hutchinson, W.L., Taylor, K.M., Sohail, M., Krausz, T., Pepys, M.B., 1999. C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J. Exp. Med. 190, 1733-1739.
    57. Gabay, C., Kushner, I., 1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448-454.
    58. Gershov, D., Kim, S.J., Brot, N., Elkon, K.B., 2000. C-reactive protein binds to apoptotic cell, protects the cells from the assembly of the terminal complement components, and sustains an anti-inflammatory innate immune response: implications for systemic autoimmunity. J. Exp. Med. 192, 1353-1364.
    59. Mortensen, R.F., 2001. C-reactive protein, inflammation, and innate immunity. Immunol. Res. 20, 163-176.
    60. Pasceri, V., Willerson, J.T., Yeh, E.T., 2000. Direct proinflammatory effect of C- reactive on human endothelial cells. Circulation. 102, 2165-2168.
    61. Potempa, L.A., Siegel, K., Fiefel, B.A., Potempa, R.T., Gewurz, H., 1987. Ex- pression, detection and assay of a neoantigen (Neo-CRP) associated with free, human C-reactive protein subunit. Mol. Immunol. 24, 531-541.
    62. Khreiss, T., József, L., Potempa, L.A., Filep, J.G., 2004. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation. 109, 2016-2022.
    63. Singer, J.M., Plotz, C.M., Bader, E., Elster, S.K., 1957. The latex-fixation test. III. Agglutination test for C-reactive protein and comparison with the capillary precipitin method. Am. J. Clin. Pathol. 28, 611-617.
    64. Hokama, Y., Nakamura, R.M., 1987. C-reactive protein: current status and future perspectives. J. Clin. Lab. Anal. 1, 15-27.
    65. Ortega, O., Gallar, P., Muñoz, M., Rodríguez, I., Carreño, A., Ortiz, M., Molina, A., Oliet, A., Lozano, L., Vigil, A., 2004. Association between C-Reactive protein levels and N-terminal Pro-B-Type natriuretic peptide in pre-dialysis patients. Nephron Clin. Pract. 97, c125-c130.
    66. Yuk, J.S., Yi, S.-J., Jung, S.H., Han, J.-A., Kim, Y.-M., Ha, K.-S., 2004. Ex situ analysis of protein arrays by SPR spectroscopy for the application of immunosensors. J. Korean Phys. Soc. 44, 967-972.
    67. Lee, W., Oh, B.-K., Bae, Y.M., Paek, S.-H., Lee, W.H., Choi, J.-W., 2003. Fabrication of self-assembled protein A monolayer and its application as an immunosensor. Biosens. Bioelectron. 19, 185-192.
    68. Bae, Y.M., Oh, B.K., Lee, W., Lee, W.H., Choi, J.-W., 2005. Study on orientation of immunoglobulin G on protein G layer. Biosens. Bioelectron. 21, 103-110.
    69. Oh, B.-K., Chun, B.S., Park, K.-W., Lee, W., Lee, W.H., Choi, J.W., 2004. Fabri- cation of protein G LB film for immunoglobulin G immobilization. Mater. Sci. Eng. C 24, 65-69.
    70. Oh, B.-K., Lee, W., Chun, B.S., Bae, S.C., Lee, W.H., Choi, J.-W., 2005.The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 20, 1847-1850.
    71. Campàs, M., Katakis, I., 2004. DNA biochip arraying, detection and amplification strategies. Trends Anal. Chem. 23, 49-62.
    72. Jensen, K.K., Ørum, H., Nielsen, P.E., Nordén, B., 1997. Kinetics for Hybridization of Peptide Nucleic Acids (PNA) with DNA and RNA Studied with the BIAcore Technique. Biochemistry. 36, 5072-5077.
    73. Bier, F., Kleinjung, F., Scheller, F., 1997. Real-time measurement of nucleic-acid hybriddization using evanescent-wave sensors: steps towards the genosensor. Sens. Actuat. B 38, 78-82.
    74. Marraza, G.,Chiannella, I., Mascini, M., 1999. Disposable DNA electrochemical sensor for hybridization detection. Biosens. Bioelectron. 14, 43-51.
    75. Nilsson, P., Persson, B., Larsson, A., Uhlen, M., Nygren, P.A., 1997. Detection of mutations in PCR products from clinical samples by surface plasmon resonance. J. Mol. Recognit. 10, 7-17.
    76. Piscevic, D., Lawall, R., Veith, M., Liley, M., Okahata, Y., Knoll, W., 1995. Oligonucleotide hybridization observed by surface plasmon optical techniques. Appl. Surf. Sci. 90, 425–436.
    77. Jordan, C.E., Frutos, A.G., Thiel, A.J., Corn, R.M., 1997. Surface plasmon reson- ance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem. 69, 4939–4947.
    78. Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M., Corn, R.M., 2001. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 73, 1–7.
    79. Wegner, G.J., Lee, N.J., Marriott, G., Corn, R.M., 2003. Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein–protein and protein–DNA interactions. Anal. Chem. 75, 4740–4746.
    80. Brockman, J.M., Frutoss, A.G., Corn, R.M., 1999. A multistep chemical modifi- cation procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging. J. Am. Chem. Soc. 121, 8044-8051.
    81. Wegner, G.J., Wark, A.W., Lee, H.J., Codner, E., Saeki, T., Fang, S., Corn, R.M., 2004. Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal. Chem. 76, 5677-5684.
    82. Shumaker-Parry, J.S., Zareie, M.H., Aebersold, R., Campbell, C.T., 2004. Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein -- DNA interactions by surface plasmon resonance microscopy. Anal. Chem. 76, 918-929.
    83. Smith, E.A., Corn, R.M., 2003. Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl. Spectrosc. 57, 320A-332A.
    84. Shumaker-Parry, J.S., Campell, C.T., 2004. Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon microscopy. Anal. Chem. 76, 907-917.
    85. Yuk, J.S., Ha, K.-S., 2004. Analysis of immunoreactions on protein arrays by using wave- length-interrogation-based surface plasmon resonance sensors. J. Korean Chem. Soc. 45, 1104-1108.
    86. Yuk, J.S., Kima, H.-S., Jung, J.-W., Jung, S.-H., Lee, S.-J., Kim, W.J., Han, J.-A., Kim, Y.-M., Ha, K.-S., 2006. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging. Biosens. Bioelectron. 21, 1521-1528.
    87. Yu, X., Wang, D., Wei, X., Ding, X., Liao, W., Zhao, X., 2005. A surface plasmon resonance imaging interferometry for protein micro-array detection. Sens. Actuat. B 108, 765-771.
    88. Spadavecchia, J., Manera, M.G., Quaranta, F., Siciliano, P., Rella, R., 2005. Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosens. Bioelecron. 21, 894-900.
    89. Rella, R., Spadavecchia, J., Manera, M.G., Siciliano, P., Santino, A., Mita, G., 2004. Liquid phase SPR imaging experiments for biosensors applications. Biosens. Bioelectron. 20, 1140-1148.
    90. Okumura, A., Sato, Y., Kyo, M., Kawaguchi, H., 2005. Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Anal. Biochem. 339, 328-337.
    91. Shumaker-Parry, J.S., Aebersold, R., Campbell, C.T., 2004. Parallel, quantitative measure- ment of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal. Chem. 76, 2071-2082.
    92. Piliarik, M., Vaisocherov´a, H., Homola, J., 2005. A new surface plasmon resonance sensor for high-throughput screening applications. Biosens. Bioelectron. 20, 2104-2110.
    93. Boozer, C., Ladd, J., Chen, S., Yu, Q., Homola, J., Jiang, S., 2004. DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. Anal. Chem. 76, 6967-6972.
    94. Boozer, C., Ladd, J., Chen, S., Jiang, S., 2006. DNA-directed protein immobi- lization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal. Chem. 78, 1515-1519.
    95. Southern, E., Mir, K., Shchepinov, M., 1999. Molecular interactions on microarrays. Nat. Genet. 21, 5-9.
    96. Ferea, T.L., Brown, P.O., 1999. Observing the living genome. Curr. Opin. Genet. Dev. 9, 715-722.
    97. Harrington, C.A., Rosenow, C., Retief, J., 2000. Monitoring gene expression using DNA microarrays. Curr. Opin. Microbiol. 3, 285-291.
    98. Nice, E.C., Catimel, B., 1999. Instrumental biosensors: new perspectives for the analysis of biomolecular interactions. Bioessays. 21, 339–352
    99. Williams, C., Addona, T.A., 2000. The integration of SPR biosensors with mass spectrometry: possible application for proteome analysis. Trends. Biotechnol. 18, 45–48.
    100. Chien, F.-C., Liu, J.-S., Su, H.-J., Kao, L.-A., Chiou, C.-F., Chen, W-.Y., Chen, S.-J., 2004. An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing. Chem. Phys. Lett. 397, 429-434.
    101. Raether, H., 1988. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin.
    102. Wallis, R.F., Stegeman, G.I., 1985. Electromagnetic Surface Excitations. Springer- Verlag, Berlin.
    103. Ong, B.H., Yuan, X., Tjin, S.C., Zhang, J., Ng, H.M., 2006. Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens. Actuat. B 114, 1028-1034.
    104. Silin, V., Weetall, H., Vanderah, D.J., 1997. SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). J. Colloid. Interf. Sci. 185, 94-103.
    105. Staros, J.V., Wright, R.W., Swingle, D.M., 1986. Enhancement by N-hydroxysulfosuccin- imide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 156, 220-222.
    106. Wacker, R., Schrőder, H., Niemeyer, C.M., 2004. Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. Anal. Biochem. 330, 281-287.
    107. Lőfås, S., Johnsson, B., 1990. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Chem. Commun. 21, 1526-1528.
    108. Kuo, Y.M., Emmerling, M.R., Woods, A.S., Cotter, R.J., Roher, A.E., 1997. Isolation, chemical characterization and quantitation of Aβ 3-pyroglutamyl peptide from neuritic plaques and vascular amyloid deposits. Biochem. Biophysical Res. Commun. 237, 188-191.
    109. BIODESIGN International, http://www.biodesign.com/
    110. Ying, S.-C., Gewurz, H., Kinoshita, C.M., Potempa, L.A., Siegel, J.N., 1989. Identification and partial characterization of multiple native and neoantigenic epitopes of human C-reactive protein by using monoclonal antibodies. J. Immuno. 143, 221-228.
    111. Kresl, J.J., Potempa, L.A., Anderson, B.E., 1998. Conversion of native oligomeric to a modified monomeric form of humam C-reactive protein. Internat. J. Biochem. Cell Boil. 30, 1415-1426.
    112. SantaLucia, J.J., 1998. A unified view of polymer, dumbbel, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. 95, 1460-1465.
    113. Kushon, S.A., Jordan, J.P., Seifert, J.L., Nielsen, H., Nielsen, P.E., Armitage, B.A., 2001. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins. J. Am. Chem. Soc. 123, 10805-10813.
    114. Esler, W.P., Stimson, E.R., Jennings, J.M., Vinters, H.V., Ghilardi, J.R., Lee, J.P., Mantyh, P.W., Maggio, J.E, 2000. Alzheimer’s disease amyloid propagation by a template-dependent dock–lock mechanism. Biochemistry. 39, 6288-6295.
    115. Massi, F., Straub, J.E., 2001. Energy landscape theory for Alzheimer’s amyloid β-peptide fibril elongation. Proteins Struct. Funct. Genet. 42, 217-229.
    116. Atwood, C.S., Huang, X., Moir, R.D., Bacarra, N.M., Romano, D., Tanzi, R.E., Bush, A.I., 1998. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12817-12826.
    117. Esler, W.P., Stimson, E.R., Ghilardi, J.R., Vinters, H.V., Lee, J.P., Mantyh, P.W., et al., 1996. In vitro growth of Alzheimer’s disease β-amyloid plaques displays first-order kinetics. Biochemistry. 35, 749-757.
    118. Atwood, C.S., Scarpa, R.C., Huang, X., Moir, R.D., Jones, W.D., Fairlie, D.P., 2000. Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid beta(1–42). J. Neurochem.75, 1219-1233.
    119. Sparks, D.L., Schreurs, B.G., 2003. Trace amounts of copper in water induce beta amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl. Acad. Sci. 100, 11065-11069.
    120. Jarrett, J.T., Berger, E.P., Lansbury, P.T., 1993. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry. 32, 4693-4697.
    121. Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Vonsattel, J.P., Tanzi, R.E., Bush, A.I., 1997. Zinc-induced Alzheimer’s Aβ1–40 aggregation is mediated by conformational factors. J. Biol. Chem. 272, 26464-26470.
    122. Moir, R.D., Atwood, C.S., Romano, D.M., Laurans, M.H., Huang, X., Bush, A.I., Smith, J.D., Tanzi, R.E., 1999. Differential effects of apolipoprotein E isoforms on metal-induced aggregation of Aβ using physiological concentrations. Biochemistry. 38, 4595-4603.
    123. Parbhu, A., Lin, H., Thimm, J., Lal, R., 2002. Imaging real-time aggregation of amyloid beta protein(1–42) by atomic force microscopy. Peptides. 23, 1265-1270.
    124. Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Tanzi, R.E., Bush, A.I., 2004. Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides. J. Biol. Inorg. Chem. 9, 954-960.
    125. Boyle, M.D.P., Reis, K.J., 1987. Bacterial Fc receptors. Biotechnology. 5, 697-703.
    126. Tanaka, T., Matsunaga, T., 2000. Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Anal. Chem. 72, 3518-3522.
    127. Neubert, H., Jacoby, E.S., Bansal, S.S., Iles, R.K., Cowan, D.A., Kicman, A.T., 2002. Enhanced affinity capture MALDI-TOF MS: orientation of an immuno- globulin G using recombinant protein G. Anal. Chem. 74, 3677-3683.
    128. Verma, S., Szmitko, P.E., Yeh, E.T., 2004. C-reactive protein structure affects function. Circulation 109, 1914 -1917.
    129. Rees, R.F., Gewurz, H., Siegel, J.N., Coon, J., Potempa, L.A., 1988. Expression of a C-reactive protein neo-antigen (neo-CRP) in inflamed rabbit liver and muscle. Clin. Immnuol. Immunopathol. 48, 95-107.
    130. Diehl, E.E., Haines, G.K., Radosevichm J.A., Potempa, L.A., 2000. Immuno- histochemical location of modified C-reactive protein antigen in normal vascular tissue. Am. J. Med. Sci. 319, 79-83.
    131. Abdella, N.A., Mojiminiyi, O.A., Moussa, M.A., Zaki, M., Al Mohammedi, H., Al Ozairi, E. S., Al Jebely, S., 2005. Plasma leptin concentration in patients with Type 2 diabetes: relationship to cardiovascular disease risk factors and insulin resistance. Diabet. Med. 22, 278-285.
    132. Parchure, N., Zouridakis, E.G., Kaski, J.C., 2002. Effect of azithromycin treatment on endothelial function in patients with coronary artery disease and evidence of chlamydia pneumoniae infection. Circulation. 105, 1298-1303.
    133. Ledue, T.B., Rifai, N., 2001. High sensitivity immunoassays for C-reactive protein: promises and pitfalls. Clin. Chem. Lab. Med. 39, 1171-1176.
    134. Meyer, M.H.F., Hartmann, M., Keusgen, M., 2006. SPR-based immunosensor for the CRP detection—A new method to detect a well known protein. Biosens. Bioelectron. 21, 1987-1990.
    135. Guedon, P., Livache, T., Martin, F., Lesbre, F., Roget, A., Bidan, G., Levy, Y., 2000. Characterization and optimization of a real-time, parallel, label-free, polypyrrole- based DNA sensor by surface plasmon resonance imaging. Anal. Chem. 72, 6003-6009.
    136. Kim, K., Cho, S., Park, J.H., Byun, Y., Chung, H., Kwon, I.C., Jeong, S.Y., 2004. Surface plasmon resonance studies of the direct interaction between a drug/ intestinal brush border membrane. Pharm. Res. 21, 1233-1239.
    137. Ferracci, G., Seagar, M., Joel, C., Miquelis, R., Leveque, C., 2004. Real time analysis of intact organelles using surface plasmon resonance. Anal. Biochem. 334, 367-375.
    138. Abdiche, Y.N., Myszka, D.G., 2004. Probing the mechanism of drug/lipid membrane interactions using Biacore. Anal. Biochem. 328, 233-243.
    139. Frostell-Karlsson, A., Widegren, H., Green, C.E., Hamalainen, M.D., Westerlund, L., Karlsson, R., Fenner, K., van de, W.H., 2005. Biosensor analysis of the interaction between drug compounds and liposomes of different properties; a two-dimensional characterization tool for estimation of membrane absorption. J. Pharm. Sci. 94, 25–37.
    140. Vareiro, M.M.L.M., Lie, J., Knoll, W., Zak, K., Williams, D., Jenkins, A.T.A., 2005. Surface plasmon fluorescence measurements of human chorionic gonadotrophin: Role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal. Chem. 77, 2426-2431.
    141. Kambhampati, D., Nielsen, P.E., Knoll, W., 2001. Investigating the kinetics of DNA-DNA and PNA-DNA interactions using surface plasmon resonance-enhanced fluorescence spectroscopy. Biosens. Bioelectron. 16, 1109-1118.

    下載圖示 校內:立即公開
    校外:2006-10-30公開
    QR CODE