簡易檢索 / 詳目顯示

研究生: 邱瑞杰
Chiu, Ray-Jay
論文名稱: 5.7GHz 功率及低雜訊放大器之設計與MMIC 電場分析之探討
The Design of 5.7GHz Power and Low Noise Amplifier and the Research of MMIC Electromagnetic Analysis
指導教授: 洪茂峰
Houng, Mau-Phon
王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 50
中文關鍵詞: 電場分析單石微波積體電路功率放大器低雜訊放大器
外文關鍵詞: Power Amplifier, Low Noise Amplifier, MMIC, Electromagnetic Analysis
相關次數: 點閱:151下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研製5.7GHz ISM頻帶之重要關鍵零組件,利用砷化鎵電晶體研製足以提供操縱在高頻率下之元件,所研究的方向在射頻前端部分最重要的---功率放大器與低雜訊放大器。
      低雜訊放大器提供射頻接收機之信號前端放大,其雜訊指數值將決定接收機之靈敏度。設計時,利用全訊科技所購買之TC2281,以兩極串接的架構,在這篇論文中的設計過程與一般設計有所不同,所利用的是建立的noise model的方式,將所欲操作的工作頻率範圍,準確的匹配至最低雜訊值。藉用這樣的方法,所匹配出的低雜訊放大器,可以操作在較寬的頻率範圍,達到寬頻的目的。
      功率放大器則提供射頻發射機所需的功率,其設計利用Load line theory找出最佳輸出阻抗,藉由匹配此負載阻抗並兼顧Return loss以得最佳的輸出功率。主要的製程,透過國家晶片中心到國外GCS公司下線,利用所提供之HBT製程,成功完成單石微波積體電路(MMIC)之研製,所得晶片為求精確量測,將晶片on board 在載具上,再以網路分析儀量測。所量得的Return loss特性雖因這次製程的變動而下降一些,但就整體而言,中心工作頻率5.7GHz卻未偏移,
    算是相當的成功了。
      此外,對於MMIC設計最重要的電場分析方法,由於在一般的論文、書籍中甚少提及。所以於本論文中,將所習得MMIC設計所需要的觀念與技巧加以說明分享,期望能在日後對研究MMIC的同學有所幫助。

      In this thesis we design key devices of 5.7GHz ISM band. We use the GaAs transistor to fabricate high frequency devices and support suitable characters in our operation frequency. The devices that we research are the most important devices in RF frond end, low noise amplifier and power amplifier.
      Low noise amplifier (LNA) is design to amplify signal of RF frond end and noise figure of the amplifier will decide sensitivity of receiver system. In our design, we use transistor TC2281 of Transcominc to realize LNA by using two-stage series structure. Our design flow of LNA has some different to general LNA design flow. We use a noise model to exactly match noise figure in our operation frequency. By this way, we can match more frequency points to low noise figure and accomplish the goal of wider frequency.
      Power amplifier provides output power for RF transceiver. We use Load line theory to find optimize output resistor and accomplish our output matching. In our design flow, we take output return loss and output power into consideration at the same time. Finally, we realize our MMIC design by GCS HBT fabrication. Generally speaking, thought there had some vibration in GCS fabrication, our central frequency is still work. So this MMIC design is successful.
      Besides, we also provide the important technology, electromagnetic analysis, of MMIC. Due to that there seldom has a single paper or a signal book dedicated to discussing this subject. Therefore I share some main ideals and skill about MMIC design that I had learned and hope that these ideals will be useful for other students to study research of MMIC in the future.

    English Abstract………………………………………………………………………i Chinese Abstract……………………………………………………………………iii Table of Content………………………………………………………………………v List of Figures………………………………………………………………………vii List of Table…………………………………………………………………………ix Contents Chapter 1 Introduction………………………………………………………………1 1.1 Introduction………………………………………………………………………1 1.2 Wireless communication…………………………………………………………2 1.3 Si and GaAs integrated circuit technology………………………………………2 1.4 Chapter introduce…………………………………………………………………3 Chapter 2 5.7GHz Low Noise Amplifier Design………………………………………5 2.1 Introductions……………………………………………………………………5 2.2 Some important specifications of amplifier………………………………………6 2.3 Noise figure circle………………………………………………………………10 2.4 DC bias…………………………………………………………………………12 2.5 Low noise amplifier design flow…………………………………………………16 Chapter 3 5.7GHz MMIC Power Amplifier Design…………………………………25 3.1 Introduction……………………………………………………………………25 3.2 Load line theory…………………………………………………………………25 3.3 Using I V curve to fine Ropt……………………………………………………29 3.4 Two-port power gains…………………………………………………………30 3.5 5.7GHz MMIC power amplifier design…………………………………………32 3.5.1 Design Goal……………………………………………………………………32 3.5.2 Power amplifier design flow…………………………………………………33 3.5.3 Simulation result………………………………………………………………34 3.5.4 Layout figure…………………………………………………………………35 3.5.5 Measurement…………………………………………………………………36 3.5.6 Conclusion……………………………………………………………………38 Chapter 4 Electromagnetic Analysis in RF Design…………………………………39 4.1 Introduction of electromagnetic analysis………………………………………39 4.2 Theory of electromagnetic analysis……………………………………………39 4.3 Electromagnetic analysis with passive element and modeling…………………42 4.4 Combine the EM result with Schematic…………………………………………45 Chapter 5 Conclusion………………………………………………………………47

    [1] Peter H. Ladbrooke, MMIC design GaAS FETs and HEMTs, Artech House,1988.

    [2] Ali M. NIKNEJAD and Robert G. Meyer “Design, Simulation and Applications of inductors and Transformers for Si RF ICS”

    [3] Jia-Sheng Hing and M. J. Lancaster “Microstrip Filter for RF/Microwave Applications”

    [4]G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentica, 1984.

    [5] S.-Y. Liu and H.-R, Chuang, “2.4 GHz Transceiver RF Front-end for ISM-Band Digital Wireless Communications, ”Applied Microwave and Wireless,pp.32-48, June Applications, Wiley, 2000.

    [6] Ulrich L.Rohde, David P. Newkrik, RF/Microwave Circuit Design for Wireless Applications, Wiley, 2000.

    [7]Steve C.Cripps, RF Power Amplifier for Wireless Communications, Artech House, 1999.

    [8]袁杰,”高頻電路分析與設計(二)” 全威公司, Oct, 1996.

    [9]蔣建勇,ISM頻帶無線通訊之射頻功率放大器模組設計,國立成功大學電機工程研究所碩士論文,民國八十四年。

    [10] Jon L. B. Walker, High-Power GaAS FET Amplifiers, Artech House, 1993.

    [11] William T. Thornton, Lawrence E. Larson, “An improved 5.7GHz ISM-Band Feedforward Amplifier Using Vector Modulators for Phase and Attenuation Control,” Microwave Journal, Vol. 42,pp. 97-106, December 1999.

    [12]陳宜隆,5.7GHz UNII 頻帶無線通訊之MMIC功率放大器及射頻收發模組之設計與製作,國立成功大學電機工程研究所碩士論文,民國九十年。

    [13] State-of the are Filter Design Using EM and Circuit Simulation Techniques,1997 IEEE MTT-S, MTT-S Workshop (WMA), 1997.

    [14] R. F. Harringdon, Field Communication by Moment Method, Macmillian, New York, 1968.

    [15] J. C. Rautio and R. F. Harring ton, “ An electromagnetic time-harmonic analysis of arbitrary microstrip circuits.” IEEE Trans., MTT-35, Aug. 1987, 726-730.

    [16] M. Koshiba, K. Hayata, and M. Suzuki, “Finite-element formulation in terms of the electric-field vector for electromagnetic waveguide problems,” IEEE Trans. , MTT-ss, OCT. 1985, 900-905.

    [17] K.S. Kunz and R. J. Leubleers, The Finite Difference Time Domain Method for Electromagnetic, CRC Press. Boca Raton FL, 1993.

    [18] M. Koshiba and M. Suzuki, “Application of the boundary-element method to waveguide discontinuities.” IEEE Trans., MTT-34, Feb. 1986, 301-307.

    [19] Special Issue on Numerical Methods, IEEE Trans., MTT-33, Oct. 1985.

    [20]莊達人,VLSI製程技術,高立圖書,1988.

    [21] EM User’s Manual, Sonnet Software., 1993.

    下載圖示 校內:立即公開
    校外:2002-09-06公開
    QR CODE