簡易檢索 / 詳目顯示

研究生: 林承賢
Lin, Cheng-Xian
論文名稱: 基於語意物件輔助之無縫 INS/GNSS/Camera 即時導航系統之研究
Seamless Realtime Navigation and Using INS/GNSS/Camera Integration Schemes with Semantic Object Detection Refresh
指導教授: 江凱偉
Chiang, Kai-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 179
中文關鍵詞: 視覺慣性里程計慣性導航/衛星定位系統相機多感測器整合神經網路語意定位
外文關鍵詞: VIO, INS/GNSS, Camera, Multi-Sensor Integration, Neural Network, Semantic Localization
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT III ACKNOWLEDGMENTS V CONTENT VI LIST OF TABLES IX LIST OF FIGURES XII Chapter 1 Introduction 1 1.1 Backgrounds 1 1.2 Motivation 5 1.3 Objectives and Contributions 7 1.4 Thesis Outline 8 Chapter 2 Fundamentals of Multi-Sensor Integrated Navigation System 10 2.1 Introduction to Reference Frames 10 2.1.1 Inertial Frame 11 2.1.2 Earth-Centered-Earth-Fixed Frame 11 2.1.3 Geodetic Reference Frame 13 2.1.4 Navigation Frame 13 2.1.5 Body Frame 14 2.1.6 Vehicle Frame 15 2.1.7 Camera Frame 16 2.1.8 Image Frame 17 2.2 Global Navigation Satellite System (GNSS) 17 2.2.1 Basic of GNSS 19 2.2.2 Stand-alone GNSS navigation 21 2.2.3 Differential GNSS navigation 22 2.2.4 Error sources of GNSS 23 2.3 Inertial Navigation System (INS) 25 2.3.1 Inertial Sensor Calibration 26 2.3.2 Error Modeling 29 2.3.3 Initial Alignment 31 2.3.4 Navigation Equations 33 2.4 Integrated Navigation System 38 2.4.1 Design of Extended Kalman Filter 40 2.4.2 System Model 43 2.4.3 Loosely Coupled Integration Scheme 45 2.4.4 Motion Constraints 46 Chapter 3 Visual Sensor Platform Design and Implementation 50 3.1 Visual Sensor Platform 50 3.1.1 Sensor Selection 51 3.1.2 Platform Design 57 3.2 Time Synchronization Method 58 3.3 Hardware Circuit Design 62 Chapter 4 Visual Inertial Odometry 63 4.1 Fundamental of Visual Inertial Odometry 63 4.2 Visual Platform Calibration and Modeling 66 4.3 Feature Extraction 69 4.4 Overview of Iconic VO and VIO 70 4.5 Selection of VINS-Mono 74 4.6 Compare Iconic VO and VIO 76 Chapter 5 The Proposed INS/GNSS/Camera Integration Scheme for Land Vehicles 79 5.1 Visual Inertial Odometry Integrated Algorithm 79 5.1.1 GNSS Measurement Condition Assessment 82 5.1.2 VIO Scale Coefficient Estimation 83 5.1.3 VIO Velocity Update 85 5.2 INS/GNSS/Camera Integration Scheme 86 Chapter 6 Semantic Object Detection Refreshed Aiding Integration Scheme 88 6.1 Offline Pre-built Model 90 6.2 Object Detection Refresh 94 6.3 Maximum Area Curve (MAC) algorithm 95 Chapter 7 Results and Analysis 100 7.1 Experimental Settings and Scenarios Description 100 7.1.1 System Description 101 7.1.2 Testing Field Description 102 7.2 Performance of NovAtel INSPVA 106 7.3 Performance of Proposed Multi-sensor Integration Scheme 114 7.3.1 GNSS SPP Integration Scheme 115 7.3.2 GNSS RTK Integration Scheme 133 7.4 Performance of Proposed ODR Integration Scheme 156 7.5 Summary of Experiments 165 Chapter 8 Conclusions and Future Works 168 8.1 Conclusions 168 8.2 Future Works 170 References 171

    [1] Adem, G. H., "Static calibration of tactical grade inertial measurements units." Report No. 496, Geodetic Science, 2010.
    [2] Aggarwal, P., Syed, Z., Noureldin, A., & El-Sheimy, N., "MEMS-based integrated navigation." Artech House, 2010.
    [3] Almagbile, A., Wang, J., & Ding, W., "Evaluating the performances of adaptive Kalman filter methods in GPS/INS integration." Journal of Global Positioning Systems 9, 33-40, 2010.
    [4] Artese, G., & Trecroci, A., "Calibration of a low-cost MEMS INS sensor for an integrated navigation system." Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, 877-882, 2008.
    [5] Aqel, Mohammad OA, et al. "Review of visual odometry: types, approaches, challenges, and applications." SpringerPlus 5.1 (2016): 1-26.
    [6] Bay, H., Tuytelaars, T. and Gool, L. V. "Surf: Speeded up robust features." European conference on computer vision. Springer, Berlin, Heidelberg, 2006.
    [7] Bloesch, M., et al. "Robust visual inertial odometry using a direct EKF-based approach." 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2015.
    [8] Brown, R. G., & Hwang, P. Y. Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions. Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions, 1997.
    [9] Brown, R., & Hwang, P. Introduction to random signals and applied Kalman filtering (Book). New York, John Wiley & Sons, Inc., 1992. 512.
    [10] Calonder, M., et al. "Brief: Binary robust independent elementary features." European conference on computer vision. Springer, Berlin, Heidelberg, 2010.
    [11] Campos, Carlos, et al. "Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam." IEEE Transactions on Robotics 37.6: 1874-1890, 2021.
    [12] Cannon, M. E., Nayak, R., Lachapelle, G., Salychev, O. S., & Voronov, V. V. Low-cost INS/GPS integration: Concepts and testing. The Journal of Navigation, 2001, 54(1), 119-134.
    [13] Chang, H. W., "Enhanced Portable Navigation for Cycling Applications." University of Calgary, 2014.
    [14] Cheng, J., et al. "A review of visual SLAM methods for autonomous driving vehicles." Engineering Applications of Artificial Intelligence 114: 104992, 2022.
    [15] Chiang, K. W., et al. "Assessment for INS/GNSS/odometer/barometer integration in loosely-coupled and tightly-coupled scheme in a GNSS-degraded environment." IEEE Sensors Journal 20.6 (2019): 3057-3069.
    [16] Chiang, K.W., et al. "Seamless navigation and mapping using an INS/GNSS/grid-based SLAM semi-tightly coupled integration scheme." Information Fusion 50 (2019): 181-196.
    [17] Davison, A. J., et al. "MonoSLAM: Real-time single camera SLAM." IEEE transactions on pattern analysis and machine intelligence 29.6: 1052-1067, 2007.
    [18] El-Sheimy, N., Hou, H., & Niu, X., "Analysis and modeling of inertial sensors using Allan variance." IEEE Transactions on instrumentation measurement 57, 140-149, 2008.
    [19] Engel, J., Koltun, V., and Cremers, D. "Direct sparse odometry." IEEE transactions on pattern analysis and machine intelligence 40.3: 611-625, 2017.
    [20] Engel, J., Schöps, T., and Cremers, D. "LSD-SLAM: Large-scale direct monocular SLAM." European conference on computer vision. Springer, Cham, 2014.
    [21] ESA, "GNSS signal – Navipedia," gssc.esa.int, 2011.
    https://gssc.esa.int/navipedia/index.php/GNSS_signal
    [22] Farrell, J., & Barth, M., "The global positioning system and inertial navigation." Vol. 61. New York, NY, USA: Mcgraw-hill, 1999.
    [23] Forster, C., Pizzoli, M., and Scaramuzza, D. "SVO: Fast semi-direct monocular visual odometry." 2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014.
    [24] Förstner, Wolfgang. "A feature based correspondence algorithm for image matching." ISPRS ComIII, Rovaniemi: 150-166, 1986.
    [25] Gao, W. imu_utils: A ROS package tool to analyze the IMU performance. Available online: https://github.com/gaowenliang/imu_utils, 2007.
    [26] Gebre-Egziabher, D., & Gleason, S., "GNSS applications and methods." Artech House. 2009.
    [27] Gelb, A., "Applied optimal estimation." MIT press, 1974.
    [28] Girshick, R. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision. 2015.
    [29] Girshick, R., et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
    [30] Godha, S., "Performance evaluation of low-cost MEMS-based IMU integrated with GPS for land vehicle navigation application," UCGE report 20239, 2006.
    [31] Groves, P. D., "Principles of GNSS, inertial, and multisensor integrated navigation systems." Artech house, 2013.
    [32] Harris, C., and Mike Stephens. "A combined corner and edge detector." Alvey vision conference. Vol. 15. No. 50. 1988.
    [33] Hou, H., "Modeling inertial sensors errors using Allan variance." University of Calgary, Department of Geomatics Engineering, 2004.
    [34] Hsu, L. T., "Analysis and modeling GPS NLOS effect in highly urbanized area." GPS solutions, 22(1), 7, 2018.
    [35] Hsu, L. T., Gu, Y., & Kamijo, S., "3D building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation," GPS solutions, 20(3), 413-428, 2016.
    [36] Hsu, L. T., Tokura, H., Kubo, N., Gu, Y., & Kamijo, S., "Multiple faulty GNSS measurement exclusion based on consistency check in urban canyons." IEEE Sensors Journal, 17(6), 1909-1917, 2017.
    [37] Hsu, L. T., Tokura, H., Kubo, N., Gu, Y., & Kamijo, S., "Multiple faulty GNSS measurement exclusion based on consistency check in urban canyons." IEEE Sensors Journal, 17(6), 1909-1917, 2017.
    [38] Hu, G., Gao, S., & Zhong, Y., "A derivative UKF for tightly coupled INS/GPS integrated navigation." ISA transactions 56, 135-144, 2015.
    [39] IEEE Std 952–1997, “IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros,” IEEE Aerospace and Electronic Systems Society, Gyro and Accelerometer Panel, Institute of Electrical and Electronics Engineers, Inc., New York, 1998.
    [40] Ioannides, R. T., Pany, T., & Gibbons, G. Known vulnerabilities of global navigation satellite systems, status, and potential mitigation techniques. Proceedings of the IEEE, 2016, 104(6), 1174-1194.
    [41] Jeffrey, C. An introduction to GNSS: GPS, GLONASS, Galileo and other global navigation satellite systems. NovAtel, 2010.
    [42] Julier, S. J., & Durrant-Whyte, H. F., "On the role of process models in autonomous land vehicle navigation systems." IEEE transactions on robotics automation 19, 1-14, 2003.
    [43] Kaplan, E., & Hegarty, C., "Understanding GPS: principles and applications," Artech house, 2005.
    [44] Kim, H., Lee, J. G., & Park, C. G. Performance improvement of GPS/INS integrated system using Allan variance analysis. In Proceedings of the 2004 International Symposium on GNSS/GPS (pp. 1-11). IGNSS, Sydney, Australia, 2004, December.
    [45] Klein, G., and Murray, D. "Parallel tracking and mapping for small AR workspaces." 2007 6th IEEE and ACM international symposium on mixed and augmented reality. IEEE, 2007.
    [46] Leick, A., Rapoport, L., & Tatarnikov, D., "GPS satellite surveying." John Wiley & Sons, 2015.
    [47] Leutenegger, Stefan, et al. "Keyframe-based visual–inertial odometry using nonlinear optimization." The International Journal of Robotics Research 34.3: 314-334, 2015.
    [48] Li, Y. H., "Lane-Level Accuracy Navigation Design Based on INS/GNSS/Odometer Semi-Tightly Coupled Integration Scheme with HD Vector Map," National Cheng Kung University, 2020.
    [49] Liao, J. K., Zhou, Z. M., Tsai, G. J., Duong, T. T., & Chiang, K. W., "The applicability analysis of using smart phones for indoor mobile mapping applications," Proc. of ION GNSS, pp. 510-531, 2014.
    [50] Lowe, D. G. "Distinctive image features from scale-invariant key-points", Int. J. Comput. Vis., vol. 20, no. 2, pp. 91-110, 2003.
    [51] Lucas, B. D., and Kanade, T. An iterative image registration technique with an application to stereo vision. Vol. 81. 1981.
    [52] Mohamed, A. H., "Optimizing the estimation procedure in INS/GPS integration for kinematic applications." Calgary, 1999.
    [53] Mourikis, A. I., and Roumeliotis, S. I. "A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation." ICRA. Vol. 2. 2007.
    [54] Mur-Artal, Raul, and Juan D. Tardós. "Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras." IEEE transactions on robotics 33.5: 1255-1262, 2017.
    [55] Nistér, David, Oleg Naroditsky, and James Bergen. "Visual odometry." Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. Vol. 1. Ieee, 2004.
    [56] NXP, " i.MX 6ULL Single-Core Processor with Arm® Cortex®-A7 Core – Block Diagram," products, 2017.
    https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-6-processors/i-mx-6ull-single-core-processor-with-arm-cortex-a7-core:i.MX6ULL
    [57] Peng, K. Y., Lin, C. A., & Chiang, K. W., "Performance Analysis of An AKF Based Tightly Coupled INS/GNSS Integrated Scheme with NHC For Land Vehicular Applications." Transactions of the Canadian Society for Mechanical Engineering 37, 503-513, 2013.
    [58] Qin, T., Li, P., and Shen, S. "Vins-mono: A robust and versatile monocular visual-inertial state estimator." IEEE Transactions on Robotics 34.4: 1004-1020, 2018.
    [59] Qin, Tong, and Shaojie Shen. "Online temporal calibration for monocular visual-inertial systems." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.
    [60] Redmon, J., and Farhadi, A. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767, 2018.
    [61] Redmon, J., et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
    [62] Reid, Tyler GR, et al. "Standalone and RTK GNSS on 30,000 km of North American Highways." Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019). 2019.
    [63] Rhudy, M., Gu, Y., Gross, J., & Napolitano, M. R., "Evaluation of matrix square root operations for UKF within a UAV GPS/INS sensor fusion application." International Journal of Navigation Observation, 2012.
    [64] Rosten, E., and Drummond T., "Machine learning for high-speed corner detection." European conference on computer vision. Springer, Berlin, Heidelberg, 2006.
    [65] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. "ORB: An efficient alternative to SIFT or SURF." 2011 International conference on computer vision. Ieee, 2011.
    [66] Sato, K., Tateshita, H., & Wakabayashi, Y., "Asia Oceania Multi-GNSS Demonstration Campaign." In XXV FIG Congress. Kuala Lumpur, Malaysia, 2014.
    [67] Savage, P. G., "Strapdown analytics," Vol. 2, pp. 15-1, Maple Plain, MN: Strapdown Associates, 2000.
    [68] Scherzinger, B. M., "Inertial navigator error models for large heading uncertainty. " In Proceedings of Position, Location and Navigation Symposium-PLANS'96, pp. 477-484, 1996.
    [69] Schonberger, J. L., and Frahm, J. M. "Structure-from-motion revisited." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
    [70] Schwarz, K. P., & Wei, M. INS/GPS integration for geodetic applications. Lecture Notes ENGO, 623, 2000.
    [71] Shi, J. "Good features to track." 1994 Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, 1994.
    [72] Shin, E. H., "Estimation techniques for low-cost inertial navigation." UCGE report, 20219, 2005.
    [73] Shin, E.-H., "Accuracy improvement of low-cost INS/GPS for land applications." University of Calgary, 2001.
    [74] Shin, E.-H., & El-Sheimy, N., "An unscented Kalman filter for in-motion alignment of low-cost IMUs," Position Location and Navigation Symposium, IEEE, pp. 273-279, 2004.
    [75] Stephenson, S., Meng, X., Moore, T., Baxendale, A., & Ford, T., "Accuracy requirements and benchmarking position solutions for intelligent transportation location-based services," Proceedings of the 8th International Symposium on Location-Based Services, 2011.
    [76] Teunissen, P., Montenbruck, O., "Springer handbook of global navigation satellite systems." Springer, 2017.
    [77] Titterton, D., & Weston, J.L., "Strapdown inertial navigation technology. " Vol. 17. IET, 2004.
    [78] Tsai, G. J., "Seamless Navigation and Mapping Using INS/GNSS/LiDAR SLAM Multi-Fusion Schemes." National Cheng Kung University, 2020.
    [79] Von Stumberg, L., Usenko, V. and Cremers, D. "Direct sparse visual-inertial odometry using dynamic marginalization." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.
    [80] Wu, Z., et al. "Improving accuracy of the vehicle attitude estimation for low-cost INS/GPS integration aided by the GPS-measured course angle." IEEE Transactions on Intelligent Transportation Systems 14.2: 553-564, 2012.
    [81] Xie, Peng, and Mark G. Petovello. "Measuring GNSS multipath distributions in urban canyon environments." IEEE Transactions on Instrumentation and Measurement 64.2: 366-377, 2014.
    [82] Xu, Rui, et al. "Performance analysis of GNSS/INS loosely coupled integration systems under spoofing attacks." Sensors 18.12: 4108, 2018.
    [83] Yang, Y., "Tightly coupled MEMS INS/GPS integration with INS aided receiver tracking loops." Department of Geomatics Engineering, 2008.
    [84] Zhang, H., and Ye, C. "Plane-aided visual-inertial odometry for 6-DOF pose estimation of a robotic navigation aid." IEEE Access 8: 90042-90051, 2020.

    無法下載圖示 校內:2027-09-09公開
    校外:2027-09-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE