簡易檢索 / 詳目顯示

研究生: 楊明勳
Yang, Ming-Hsun
論文名稱: 鐵磁性Zn1-xCoxO奈米柱之成長與特性分析
Growth and properties of ferromagnetic Zn1-xCoxO nanorods
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 112
中文關鍵詞: 氧化鋅過渡金屬自旋電子學稀釋型磁性半導體
外文關鍵詞: transition metal, ZnO, Diluted magnetic semiconductor(DMS), spintronics
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用thermal CVD法於成長氧化鋅的同時摻雜入鈷原子,以形成高方向性的稀釋型磁性半導體Zn1-xCoxO奈米柱。藉由改變裝盛Co有機金屬化合物器皿的大小及其加熱溫度,皆可成功地調節鈷於氧化鋅奈米柱中含量之大小。由XRD及TEM結構分析得知,Zn1-xCoxO (x<11.2%)奈米柱具有單晶的wurtzite結構,且沒有任何鈷或氧化鈷的相分離產生。經由超導量子干涉儀量測Zn1-xCoxO (x<8.7%)奈米柱磁性,顯示其在室溫下具有鐵磁特性,且居禮溫度大於350K。而利用UV-Vis吸收光譜量測成長之Zn1-xCoxO奈米柱,顯示其在可見光區是透明的且其能隙隨鈷含量的增加有紅位移的情形出現。另外本研究也發現經由改善氧化鋅之結晶品質,可有效地提升Zn1-xCoxO奈米柱之鐵磁特性。

      Well-aligned Zn1-xCoxO nanorods have been grown by in-situ doping of Co in ZnO nanorods using a thermal chemical vapor deposition method. Co contents in the Zn1-xCoxO nanorods are adjustable by varying the diameter of the Co source container and the vaporing temperature of the Co organo-metallic precursor. Structural analyses indicated that the Zn1-xCoxO (x<11.2%) nanorod possesses the single crystalline wurtzite structure and there is no segregated cluster of impurity phase appearing throughout the nanorod. Room-temperature ferromagnetism in the Zn1-xCoxO (x<8.7%) nanorods is observed and a Curie temperature higher than 350K is obtained in the nanorods. In addition, the ferromagnetic properties of the Zn1-xCoxO nanorods have been shown strongly dependent on the quality of nanorods. The transparence of the Zn1-xCoxO nanorods in the visible region has been examined by uv-visible absorption. Red-shifted of the fundamental absorptions relative to that of the pure ZnO nanorods is observed in the Co-doped ZnO nanorods.

    總目錄 中文摘要…………………………………………………………………….. I 英文摘要……………………………………………………………………..II 誌謝………………………………………………………………………….III 總目錄………………………………………………………………………..Ⅴ 圖目錄………………………………………………………………………..Ⅸ 表目錄..……………………………………………………………….....ⅩⅤ 第一章 緒論…………………………………………………………….......1 1-1前言….……………………………………………………………………..1 1-2一維奈米材料………….…………………………………………………..2 1-3氧化鋅(ZnO)….……..…………………………………………………….4 1-4自旋電子學(Spintronics)….…...………………………………….…10 1-5研究動機………………….……………………………………………...13 第二章 理論基礎……..………………………………………………......14 2-1成長一維奈米結構之方法……………………………………………....14 2-1.1Vapor-Liquid-Solid Method….……………………………………..14 2-1.2 Solution-Liquid-Solid Method…………………………………….15 2-1.3 使用具有奈米一維結構之模具………………………………….....15 2-1.4 使用適當的界面活性劑來控制其不同面向具有不同的成長速.....18 2-1.5 螺旋差排導致一維成長(Screw dislocation growth)……….....18 2-1.6 氧化物促進一維奈米線成長(Oxide assisted growth)…….….…21 2-1.7 非等方向性奈米晶體之成長法………………………………...…..23 2-2化學氣相沉積(CVD)………….………………………………………....24 2-3磁性理論………………………………………………………………....26 2-3.1磁性的來源…………………………………….……………....…….26 2-3.2磁性物質的種類………………………………………….……....….26 2-3.3磁滯曲線………………………………........................…30 2-4 DMS文獻回顧……………………………………….……………….....32 2-4.1 ZnO based DMS…………………………………..….………….....32 2-4.2一維氧化鋅奈米柱及奈米線之DMS……………….......……………37 第三章 實驗參數與研究方法……………………………………..........38 3-1 實驗流程………………………………………………………………...38 3-2 系統設計………………………………………………………………...39 3-2.1 反應氣體輸送裝置……………………………………………….....39 3-2.2 反應器…………………………………………………………….....39 3-2.3 真空及排氣裝置………………………………………………….....40 3-3 實驗材料………………………………………………………………...42 3-3.1 反應物…………………………………………………………….....42 3-3.2 基板材料………………………………………………………….....42 3-4 基板前處理……………………………………………………………...43 3-5 實驗操作步驟…………………………………………………………...43 3-6 分析與鑑定……………………………………………………………...44 3-6.1 掃描式電子顯微鏡分析………………………………………….....44 3-6.2 X光繞射分析儀(XRD)……………….…………………………......44 3-6.3 電子探針微區分析儀(Electron Probe Microanalyzer)………...46 3-6.4 超導量子干涉磁量儀Superconducting Quantum Interference Device,SQUID)………………………………… .…………46 3-6.5 穿透式電子顯微鏡(TEM)……………………………..…..………..48 3-6.6紫外線-可見光吸收光譜儀(UV-Visible Absorption Spectrometer )………………………………………………………....................49 3-6.7 螢光光譜儀(PL)……………...………………………………..……51 第四章 以兩區溫控thermal CVD系統成長鐵磁性Zn1-xCoxO奈米柱……..53 4-1.1 成長純氧化鋅奈米柱………….……………………………………..53 4-1.2 成長Zn1-xCoxO奈米柱……..………………………………………..54 4-2 製程參數對成長Zn1-xCoxO奈米柱的影響…………………………....57 4-2.1 DCo對Zn1-xCoxO中鈷含量的影響.………………………………....57 4-2.2 基板溫度改變對Zn1-xCoxO中鈷含量及表面形態的影響...……...57 4-2.3 改變O2/N2流量比對成長Zn1-xCoxO奈米柱的影響…………...…..67 4-3 結構分析…………………………………….……………………….….69 4-3.1 XRD分析…………………………………………………………......69 4-3.2 TEM微結構分析…………………………………………………......70 4-3.3 UV-Vis吸收光譜分析…...………………………………………..…71 4-4 Zn1-xCoxO奈米柱之磁性分析……..………………….………….…..80 4-5結論………………............................................81 第五章 以三區溫控thermal CVD系統成長鐵磁性Zn1-xCoxO奈米柱………85 5-1.1 以三區溫控thermal CVD系統成長純氧化鋅奈米柱……….……...86 5-1.2 成長Zn1-xCoxO奈米柱…………………….………………………...86 5-2 底溫爐區鈷反應物加熱溫度改變對鈷組成的影響……...…………..86 5-3 磁性量測………………………...…………………………………....89 5-4 於三區溫控系統成長結晶品質佳之氧化鋅奈米柱…..…………….…94 5-5 於三區溫控系統之最佳成長條件沉積Zn1-xCoxO奈米柱..…………..97 5-6 最佳條件成長Zn1-xCoxO奈米柱之磁性量測……………...………...104 5-7 結論…………………………………………………………………...…106 第六章 總結論……………………………………...……………..….....107 第七章 參考文獻………………………....……….…..............….109

    [1] Michael Roukes, 胡崇德譯, 科學人, 15, 93, 2003
    [2] George M. Whitesides, 張明德譯, 科學人, 14, 85, 2003
    [3] 馬振基, 全華科技圖書, 1-9, 2004
    [4] 尤啟中, 以化學氣相沉積法成長SiOx與TiO2一維奈米結構之研究, 碩士論文
    [5] A. P. Alivisatos, Science, 271, 933, 1996
    [6] Iijima Nature 354, 56, 1991
    [7] J. Hu, T. W. Odom, C. M Lieber. Acc. Chem. Res. 32, 435, 1999
    [8] Mauricio Terrones, Wen Kuang Hsu, Harold W. Kroto, David R.M. Walton Topics in Current Chemistry, 199, 189, 1999
    [9] Y. Cui, C. M. Lieber, Science, 291, 851, 2001
    [10] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, Nano Lett., 2, 101, 2002
    [11] X. Duan, Y. Huang, C. M. Lieber, Nano Lett,. 2, 487, 2002
    [12] Peidong Yang, Science, 292, 1897, 2001
    [13] Peidong Yang, J. Phys. Chem. B, 2001
    [14] Peidong Yang Business briefing:Global Photonics Applications & Technology, 42
    [15] Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber, Science, 293, 1289, 2001
    [16] 溫慧怡,高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究,碩士論文
    [17] David D. Awschalom, 張有毅、陳企寧譯, 科學人, 7, 45, 2002
    [18] 盧志權,工業材料雜誌,169,117,2001
    [19] H. Ohno, Science, 281, 951, 1998
    [20] Kazunori Sato, Hiroshi Katayama Yoshida, Jpn. J. Appl. Phys., 40, L334, 2001
    [21] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89, 1964
    [22] K. Hiruma et al., Appl. Phys. Lett. 59, 431, 1991
    [23] Younan Xia and Peidong Yang, Adv. Mater. 15, 353, 2003
    [24] A. P. Alivisatos et al., Nature 404, 59, 2000
    [25] A. P. Alivisatos et al., J. Am. Chem. Soc. 122, 12700, 2000
    [26] X. S. Peng et al., Appl. Phys. A 74, 437, 2001
    [27] X. S. Peng et al., J. Mater. Chem. 12, 1602, 2002
    [28] S. T. Lee et al., J. Mater. Res. 14, 4503, 1999
    [29] J.-J. Wu, S.-C. Liu, Adv. Mater. 14, 215, 2002
    [30] J.-J. Wu, S.-C. Liu, J. Mater. Chem., 12, 3125, 2002
    [31] James D. Plummer Silicon VLSI Technology
    [32] B. D. Cullity, introduction to magnetic material, Wesley, 1972
    [33] Chikazumi, S., 張喣,李學養合譯,磁性物理學,聯經公司出版,1981
    [34] 張文成,唐敏注,張慶瑞,劉如熹,科學月刊,32(4),286,2001
    [35] S. Datta, B. Das, Appl. Phys. Lett. 56, 665, 1990
    [36] H. Ohno, N. Akiba, F. Matsukura, A. Shen, K. Ohtani, Y. Ohno, Appl. Phys. Lett. 73, 363, 1998
    [37] N. A. Gershenfeld, I. L. Chuang, Scienec, 275, 350, 1997
    [38] S. J. Pearton et al., J. Appl. Phys., 93(1), 1, 2003
    [39] S. J. Pearton et al., Material Science and Engineering, R40, 137, 2003
    [40] T. Dietl, H. Ohno, F. Matsukura et al., Science, 287, 1019, 2000
    [41] Tomoji Kawai, Kenji Ueda et al., Appl. Phys. Lett., 79(9), 988, 2001
    [42] Jae Hyun Kim et al., J. Appl. Phys., 92(10), 6066, 2002
    [43] Young Mok Cho et al., Appl. Phys. Lett. 80(18), 3358, 2002
    [44] S. G. Yang, A. B. Pakhomov, S. T. Hung, C. Y. Wong, IEEE transactions on magnetics, 38(5), 2877, 2002
    [45] Hyeon-Jun Lee et al., Appl. Phys. Lett., 81(21), 4020, 2002
    [46] R. M. Frazier, K. Ip et al., J. Vac. Sci. Technol. B, 21(4), 1476, 2003
    [47] Y. Q. Chang et al. Appl. Phys. Lett. 83(19), 4020, 2003
    [48] Sug Woo Jung et al. Adv. Mater., 15(15), 1358, 2003
    [49] 汪建民 材料分析
    [50] 鄭信民,林麗娟 工業材料 181 100-108 2002
    [51] 呂登復 科儀新知 6(3) 75-86 1984
    [52] 楊鴻昌 科儀新知 12(6) 72-79 1991
    [53] 行政院國家科學委員會精密儀器發展中心 儀器總覽 基本物理量量測儀
    [54] Aicha A. R. Elshabini-Riad, Thin Film Technology Handbook, The McGraw-Hill Companies, Inc.
    [55] M.M. Rahman et al., J. Phys. Chem. Solids 60 201 1999

    下載圖示 校內:立即公開
    校外:2004-08-17公開
    QR CODE