| 研究生: |
簡俐津 Chien, Li-Chin |
|---|---|
| 論文名稱: |
合成兼具四級銨鹽及亞磷酸官能基之高分子修飾於鈦金屬表面的表面特性及其血液相容性與抗菌性之探討 Studies of surface modification of titanium with novel copolymers containing both trimethylammonium and phosphonic acid functionalities |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 鈦金屬 、亞磷酸 、四級銨鹽 、血液相容性 、抗生物膜形成 |
| 外文關鍵詞: | titanium, phosphonic acid, trimethylammonium, hemocompatibility, antibiofilm |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了改善鈦及其合金之醫療器材在血液相容性(hemocompatibility)及抗生物膜形成能力(antibiofilm activity)不佳的問題,本研究的目標是開發新型高分子及修飾方法來改善此問題。在此研究中,我們共聚一個具雙電性且能穩定接枝到鈦金屬表面的雙功能性高分子,經由極簡便的方式修飾到鈦金屬表面上。單體選擇方面,我們選擇含有亞磷酸官能基的6-acryloyloxy hexyl phosphonic acid (AcrHPA)及具正電荷且有抗菌功能的四級銨鹽官能基之[2-(Acryloyloxy)ethyl] trimethylammonium chloride solution (AETAC) ,透過傳統自由基聚合的方式將其共聚為兩性聚電解質(polyampholytes),利用側鏈上的部分亞磷酸官能基與鈦基材表面產生鍵結 ,且藉由改變AETAC的進料比調整表面化性及電性,進而探討此改質表面的血液相容性及抗生物聚集的能力。
在研究過程中,藉由NMR、GPC對共聚物進行組成以及基本性質之鑑定,爾後將製備好之共聚高分子以旋轉塗佈(spin coating)的方式塗佈於鈦基材上加熱進行表面鍵結反應,接著利用靜態接觸角(static contact angle)、原子力顯微鏡(atomic force microscopy)、電子能譜儀(x-ray photoelectron spectroscopy)探討改質層之親疏水性、表面粗糙度、膜厚、表面元素組成。
經由各項分析鑑定,我們成功地透過傳統自由基聚合的方式將AcrHPA及AETAC兩單體合成共聚高分子;利用側鏈上的亞磷酸官能基確實可以使共聚高分子成功地透過化學鍵結的方式鍵結於鈦基材表面;各改質層之表面親疏水性、表面粗糙度及改質層於表面的穩定度受共聚高分子的組成及與表面鍵結行為的影響。經血小板吸附及抗菌實驗結果,我們發現當AETAC進料比率為50% 時,該改質層表面有最佳的血液相容性,但不具抑菌效果。
Despite of its widely uses in various clinical applications, the titanium-based material still faces different challenges, such as hemocompatibility and antibiofilm characteristics required in various scenarios. The objective of this investigation was to develop a novel surface modification strategy for titanium-based material to improve platelet-contacting characteristics that is important in rigorous blood-contacting cardiovascular applications and prevent biofilm formation that is believed to cause the device infection. In this work, a novel multi-functional copolymer, which composed of 6-acryloyloxy hexyl phosphonic acid (AcrHPA) and [2-(Acryloyloxy)ethyl] trimethylammonium chloride solution (AETAC) units will be synthesized by free radical copolymerization. The phosphonic acid groups in these novel copolymers can impart covalent binding to the titanium substrate. Compared with phosphoryl choline-containing polymers, these copolymers have cationic and anionic groups on the different monomer residue. We hope that they have the similar features, such as hemocompatibility and anti-biofouling properties. Surface analyses indicated a covalent-bound layer of AcrHPA-AETAC copolymer was formed on top of titanium substrate. In addition, the surface characteristics of these spun-coated copolymers were affected by the composition of the monomers used. The most platelet compatible titanium substrate was noted on that modified with the copolymer containing 50% trimethylammonium functionalities. In summary, the surface modification scheme presented in this work would be of potential as well as technologically feasible to improve the platelet compatibility of the titanium-based biomaterials.
1. Els Vanderleyden, S. M., Jan Luyten and Peter Dubruel, Implantable (Bio)Polymer Coated Titanium Scaffolds: A Review. Current Pharmaceutical Design 2012, 18, 2576-2590.
2. Castner, D. G.; Ratner, B. D., Biomedical surface science: Foundations to frontiers. Surface Science 2002, 500, (1–3), 28-60.
3. Cheng, G.; Zhang, Z.; Chen, S.; Bryers, J. D.; Jiang, S., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, (29), 4192-9.
4. Thurston, T. E.; Andrades, P.; Phillips, R. A.; Ray, P. D.; Grant, J. H., 3rd, Safety profile of wire osteosynthesis in craniosynostosis surgery. The Journal of craniofacial surgery 2009, 20, (4), 1154-8.
5. Moe, K. S.; Weisman, R. A., Resorbable Fixation in Facial Plastic and Head and Neck Reconstructive Surgery: An Initial Report on Polylactic Acid Implants. Laryngoscope 2001, 111, 1697–1701.
6. Klos, K.; Sauer, S.; Hoffmeier, K.; Gras, F.; Frober, R.; Hofmann, G. O.; Muckley, T., Biomechanical evaluation of plate osteosynthesis of distal fibula fractures with biodegradable devices. Foot & ankle international. / American Orthopaedic Foot and Ankle Society [and] Swiss Foot and Ankle Society 2009, 30, (3), 243-51.
7. Liu, X.; Chu, P. K.; Ding, C., Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports 2004, 47, (3–4), 49-121.
8. Viornery, C.; Guenther, H. L.; Aronsson, B.-O.; Péchy, P.; Descouts, P.; Grätzel, M., Osteoblast culture on polished titanium disks modified with phosphonic acids. Journal of Biomedical Materials Research 2002, 62, (1), 149-155.
9. Brunette, D. M.; Tengvall, P.; Textor, M.; Thomsen, P., Titanium in Medicine, Springer, 2001.
10. Liu, X. Y.; Chu, P. K.; Ding, C. X., Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R 2004, 47, (3-4), 49-121.
11. Branemark, P. I.; Hansson, B. O.; Adell, R.; Breine, U.; Lindstrom, J.; Hallen, O.; Ohman, A., Osseo-Integrated Implants in Treatment of Edentulous Jaw - Experience from a 10-Year Period. Scand J Plast Recons 1977, 7-132.
12. Ehrenfest, D. M. D.; Coelho, P. G.; Kang, B. S.; Sul, Y. T.; Albrektsson, T., Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 2010, 28, (4), 198-206.
13. Thurston, T. E.; Andrades, P.; Phillips, R. A.; Ray, P. D.; Grant, J. H., Safety Profile of Wire Osteosynthesis in Craniosynostosis Surgery. J. Craniofac. Surg. 2009, 20, (4), 1154-1158.
14. Klos, K.; Sauer, S.; Hoffmeier, K.; Gras, F.; Frober, R.; Hofmann, G. O.; Muckley, T., Biomechanical Evaluation of Plate Osteosynthesis of Distal Fibula Fractures with Biodegradable Devices. Foot Ankle Int. 2009, 30, (3), 243-251.
15. Moe, K. S.; Weisman, R. A., Resorbable fixation in facial plastic and head and neck reconstructive surgery: An initial report on polylactic acid implants. Laryngoscope 2001, 111, (10), 1697-1701.
16. Ries, M. W.; Kampmann, C.; Rupprecht, H. J.; Hintereder, G.; Hafner, G.; Meyer, J., Nickel release after implantation of the amplatzer occluder. Am Heart J 2003, 145, (4), 737-741.
17. Huang, H. H.; Chiu, Y. H.; Lee, T. H.; Wu, S. C.; Yang, H. W.; Su, K. H.; Hsu, C. C., Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 2003, 24, (20), 3585-3592.
18. Carpenter, A. W.; Schoenfisch, M. H., Nitric oxide release: part II. Therapeutic applications. Chemical Society reviews 2012, 41, (10), 3742-52.
19. Courtney, J. M.; Lamba, N. M. K.; Sundaram, S.; Forbes, C. D., Biomaterials for blood-contacting applications. Biomaterials 1994, 15, (10), 737-744.
20. Harris, L. G.; Richards, R. G., Staphylococci and implant surfaces: a review. Injury 2006, 37 Suppl 2, S3-14.
21. Kumar, V.; Rauscher, H.; Brétagnol, F.; Arefi-Khonsari, F.; Pulpytel, J.; Colpo, P.; Rossi, F., Preventing Biofilm Formation on Biomedical Surfaces. In Plasma Technology for Hyperfunctional Surfaces, Wiley-VCH Verlag GmbH & Co. KGaA: 2010; pp 183-223.
22. Kong, M.; Chen, X. G.; Xing, K.; Park, H. J., Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology 2010, 144, (1), 51-63.
23. Mutin, P. H.; Guerrero, G.; Vioux, A., Hybrid materials from organophosphorus coupling molecules. Journal of Materials Chemistry 2005, 15, (35-36), 3761.
24. Bolz, A.; Schaldach, M., Artificial-Heart Valves - Improved Blood Compatibility by Pecvd a-Sic-H Coating. Artif Organs 1990, 14, (4), 260-269.
25. Dion, I.; Baquey, C.; Havlik, P.; Monties, J. R., A New Model to Test Platelet-Adhesion under Dynamic Conditions - Application to the Evaluation of a Titanium Nitride Coating. Int J Artif Organs 1993, 16, (7), 545-550.
26. Dion, I.; Rouais, F.; Trut, L.; Baquey, C.; Monties, J. R.; Havlik, P., Tin Coating - Surface Characterization and Hemocompatibility. Biomaterials 1993, 14, (3), 169-176.
27. Jones, M. I.; McColl, I. R.; Grant, D. M.; Parker, K. G.; Parker, T. L., Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J Biomed Mater Res 2000, 52, (2), 413-421.
28. Wang, X. H.; Zhang, F.; Li, C. R.; Yu, L. J.; Zheng, Z. H.; Liu, X. H.; Chen, L. Z.; Wang, H. M.; Chen, A., In vivo and in vitro investigation of titanium oxide layers coated on LTI-carbon by IBED. J Mater Sci 2001, 36, (8), 2067-2072.
29. Yuhta, T.; Kikuta, Y.; Mitamura, Y.; Nakagane, K.; Murabayashi, S.; Nishimura, I., Blood Compatibility of Sputter-Deposited Alumina Films. J Biomed Mater Res 1994, 28, (2), 217-224.
30. Ye, S. H.; Johnson Jr, C. A.; Woolley, J. R.; Murata, H.; Gamble, L. J.; Ishihara, K.; Wagner, W. R., Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B: Biointerfaces 2010, 79, (2), 357-364.
31. Chen, J. L.; Chen, C.; Chen, Z. Y.; Chen, J. Y.; Li, Q. L.; Huang, N., Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. J Biomed Mater Res A 2010, 95A, (2), 341-349.
32. Tebbe, D.; Thull, R.; Gbureck, U., Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces. Biomed Eng Online 2007, 6.
33. Chen, J.; Chen, C.; Chen, Z.; Chen, J.; Li, Q.; Huang, N., Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. Journal of Biomedical Materials Research Part A 2010, 95A, (2), 341-349.
34. Huang, N. P.; Csucs, G.; Emoto, K.; Nagasaki, Y.; Kataoka, K.; Textor, M.; Spencer, N. D., Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to TiO2 surfaces. Langmuir 2002, 18, (1), 252-258.
35. Maddikeri, R. R.; Tosatti, S.; Schuler, M.; Chessari, S.; Textor, M.; Richards, R. G.; Harris, L. G., Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces. J Biomed Mater Res A 2008, 84A, (2), 425-435.
36. Ye, S. H.; Johnson, C. A., Jr.; Woolley, J. R.; Snyder, T. A.; Gamble, L. J.; Wagner, W. R., Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. Journal of biomedical materials research. Part A 2009, 91, (1), 18-28.
37. Ye, S. H.; Johnson, C. A.; Woolley, J. R.; Oh, H. I.; Gamble, L. J.; Ishihara, K.; Wagner, W. R., Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloid Surface B 2009, 74, (1), 96-102.
38. Ye, S. H.; Johnson, C. A.; Woolley, J. R.; Murata, H.; Gamble, L. J.; Ishihara, K.; Wagner, W. R., Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloid Surface B 2010, 79, (2), 357-364.
39. Xiao, S. J.; Textor, M.; Spencer, N. D.; Sigrist, H., Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir 1998, 14, (19), 5507-5516.
40. Pegg, E. C.; Walker, G. S.; Scotchford, C. A.; Farrar, D.; Grant, D., Mono-functional aminosilanes as primers for peptide functionalization. J Biomed Mater Res A 2009, 90A, (4), 947-958.
41. Rezania, A.; Johnson, R.; Lefkow, A. R.; Healy, K. E., Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir 1999, 15, (20), 6931-6939.
42. Gawalt, E. S.; Avaltroni, M. J.; Danahy, M. P.; Silverman, B. M.; Hanson, E. L.; Midwood, K. S.; Schwarzbauer, J. E.; Schwartz, J., Bonding organics to Ti alloys: Facilitating human osteoblast attachment and spreading on surgical implant materials corrections (vol 19, pg 200, 2003). Langmuir 2003, 19, (17), 7147-7147.
43. Adden, N.; Gamble, L. J.; Castner, D. G.; Hoffmann, A.; Gross, G.; Menzel, H., Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir 2006, 22, (19), 8197-8204.
44. Gawalt, E. S.; Avaltroni, M. J.; Koch, N.; Schwartz, J., Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir 2001, 17, (19), 5736-5738.
45. Chapman, R. G.; Ostuni, E.; Takayama, S.; Holmlin, R. E.; Yan, L.; Whitesides, G. M., Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc 2000, 122, (34), 8303-8304.
46. Konradi, R.; Pidhatika, B.; Muhlebach, A.; Textort, M., Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir 2008, 24, (3), 613-616.
47. Bauer, M.; Lautenschlaeger, C.; Kempe, K.; Tauhardt, L.; Schubert, U. S.; Fischer, D., Poly(2-ethyl-2-oxazoline) as Alternative for the Stealth Polymer Poly(ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility. Macromol Biosci 2012, 12, (7), 986-998.
48. Zwaal, R.; Comfurius, P.; Van Deenen, L., Membrane asymmetry and blood coagulation. Nature 1977.
49. Plopper, G., Principles of Cell Biology. Jones & Bartlett Learning, 2013.
50. Johnston, D. S.; Sanghera, S.; Pons, M.; Chapman, D., Phospholipid polymers—Synthesis and spectral characteristics. Biochimica et Biophysica Acta (BBA) - Biomembranes 1980, 602, (1), 57-69.
51. Jung, S. C.; Lee, K.; Kim, B. H., Biocompatibility of plasma polymerized sandblasted large grit and acid titanium surface. Thin Solid Films 2012, 521, (0), 150-154.
52. Holmlin, R. E.; Chen, X.; Chapman, R. G.; S., T.; Whitesides, G. M., Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir 2001, 17, 2841-2850.
53. Ye, S. H.; Johnson, C. A., Jr.; Woolley, J. R.; Oh, H. I.; Gamble, L. J.; Ishihara, K.; Wagner, W. R., Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids and surfaces. B, Biointerfaces 2009, 74, (1), 96-102.
54. Chang, Y.; Chen, S.; Zhang, Z.; Jiang, S., Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir 2006, 22, 2222-2226.
55. Chang, Y.; Liao, S. C.; Higuchi, A.; Ruaan, R. C.; Chu, C. W.; Chen, W. Y., A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir 2008, 24, 5453-5458.
56. Lewis, A. L.; Cumming, Z. L.; Goreish, H. H.; Kirkwood, L. C.; Tolhurst, L. A.; Stratford, P. W., Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials 2001, 22, (2), 99-111.
57. Yu, B. Y.; Zheng, J.; Chang, Y.; Sin, M. C.; Chang, C.-H.; Higuchi, A.; Sun, Y.-M., Surface Zwitterionization of Titanium for a General Bio-Inert Control of Plasma Proteins, Blood Cells, Tissue Cells, and Bacteria. Langmuir 2014, 30, (25), 7502-7512.
58. Campoccia, D.; Montanaro, L.; Arciola, C. R., A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34, (34), 8533-8554.
59. Simoncic, B.; Tomsic, B., Structures of Novel Antimicrobial Agents for Textiles - A Review. Textile Research Journal 2010, 80, (16), 1721-1737.
60. Carmona-Ribeiro, A.; de Melo Carrasco, L., Cationic Antimicrobial Polymers and Their Assemblies. International Journal of Molecular Sciences 2013, 14, (5), 9906-9946.
61. Yang, W. J.; Cai, T.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M.; Rittschof, D., Barnacle Cement as Surface Anchor for “Clicking” of Antifouling and Antimicrobial Polymer Brushes on Stainless Steel. Biomacromolecules 2013, 14, (6), 2041-2051.
62. Bouloussa, O.; Rondelez, F.; Semetey, V., A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chemical communications 2008, (8), 951-953.
63. Schwartz, J.; Avaltroni, M. J.; Danahy, M. P.; Silverman, B. M.; Hanson, E. L.; Schwarzbauer, J. E.; Midwood, K. S.; Gawalt, E. S., Cell attachment and spreading on metal implant materials. Mat Sci Eng C-Bio S 2003, 23, (3), 395-400.
64. Marcinko, S.; Fadeev, A. Y., Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir 2004, 20, (6), 2270-2273.
65. Silverman, B. M.; Wieghaus, K. A.; Schwartz, J., Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir 2005, 21, (1), 225-228.
66. Lu, G.; Bernasek, S. L.; Schwartz, J., Oxidation of a polycrystalline titanium surface by oxygen and water. Surf Sci 2000, 458, (1-3), 80-90.
67. Zoulalian, V.; Monge, S.; Zurcher, S.; Textor, M.; Robin, J. J.; Tosatti, S., Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonates). J Phys Chem B 2006, 110, (51), 25603-25605.
68. Goldberg, S.; Sposito, G., A Chemical-Model of Phosphate Adsorption by Soils .1. Reference Oxide Minerals. Soil Sci Soc Am J 1984, 48, (4), 772-778.
69. Guerrero, G.; Mutin, P. H.; Vioux, A., Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chem Mater 2001, 13, (11), 4367-4373.
70. Stumm, W., The Inner-Sphere Surface Complex - a Key to Understanding Surface Reactivity. Adv Chem Ser 1995, 244, 1-32.
71. Muljadi, D.; Posner, A. M.; Quirk, J. P., Mechanism of Phosphate Adsorption by Kaolinite Gibbsite and Pseudoboehmite .2. Location of Adsorption Sites. J Soil Sci 1966, 17, (2), 230-&.
72. Rajan, S. S. S., Adsorption of Divalent Phosphate on Hydrous Aluminum-Oxide. Nature 1975, 253, (5491), 434-436.
73. Minko, S., Polymer Surfaces and Interfaces First ed.; Spinger: 2008.
74. Chuang, W. H.; Lin, J. C., Surface characterization and platelet adhesion studies for the mixed self-assembled monolayers with amine and carboxylic acid terminated functionalities. Journal of Biomedical Materials Research Part A 2007, 82A, (4), 820-830.
75. Shen, C. H.; Lin, J. C., Platelet Compatibility Improvement by Proper Choice of Acidic Terminal Functionality for Mixed-Charge Self-Assembled Monolayers. Langmuir 2011, 28, (1), 640-647.
76. Cho, Y. J.; Lin, J. C., Zwitterionic and phosphonic acid containing copolymer for surface modification of titanium : synthesis, characterization and hemocompatibility. 2013.
77. Stevens, N.; Priest, C. I.; Sedev, R.; Ralston, J., Wettability of Photoresponsive Titanium Dioxide Surfaces. Langmuir 2003, 19, (8), 3272-3275.
78. Hernández de Gatica, N. L.; Jones, G. L.; Gardella Jr, J. A., Surface characterization of titanium alloys sterilized for biomedical applications. Applied Surface Science 1993, 68, (1), 107-121.
79. Kilpadi, D. V.; Lemons, J. E.; Liu, J.; Raikar, G. N.; Weimer, J. J.; Vohra, Y., Cleaning and heat-treatment effects on unalloyed titanium implant surfaces. The International journal of oral & maxillofacial implants 2000, 15, (2), 219-30.
80. Kakavandi, R.; Savu, S. A.; Caneschi, A.; Chasse, T.; Casu, M. B., At the interface between organic radicals and TiO2(110) single crystals: electronic structure and paramagnetic character. Chemical communications 2013, 49, (86), 10103-5.
81. Kerber, S. J.; Bruckner, J. J.; Wozniak, K.; Seal, S.; Hardcastle, S.; Barr, T. L., The nature of hydrogen in x‐ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. Journal of Vacuum Science & Technology A 1996, 14, (3), 1314-1320.
82. Reinholdt, M.; Ilie, A.; Roualdès, S.; Frugier, J.; Schieda, M.; Coutanceau, C.; Martemianov, S.; Flaud, V.; Beche, E.; Durand, J., Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells. Membranes 2012, 2, (4), 529-552.
83. Suh, T. S.; Joo, C. K.; Kim, Y. C.; Lee, M. S.; Lee, H. K.; Choe, B. Y.; Chun, H. J., Surface modification of polymethyl methacrylate intraocular lenses with the mixture of acrylic acid and acrylamide via plasma-induced graft copolymerization. Journal of Applied Polymer Science 2002, 85, (11), 2361-2366.
84. Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S., XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 2001, 17, (9), 2664-2669.
85. Korematsu, A.; Takemoto, Y.; Nakaya, T.; Inoue, H., Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface. Biomaterials 2002, 23, (1), 263-271.
86. Schuetzle, D.; Carter, R. O.; Shyu, J.; Dickie, R. A.; Holubka, J.; McIntyre, N. S., The Chemical Interaction of Organic Materials with Metal Substrates. Part I: ESCA Studies of Organic Phosphate Films on Steel. Appl. Spectrosc. 1986, 40, (5), 641-649.