| 研究生: |
呂揚恩 Lu, Yang-En |
|---|---|
| 論文名稱: |
高精點雲地圖增強緊耦合慣性導航/衛星定位/固態光達導航製圖單元 A Novel Enhanced Tightly Coupled Approach: INS/GPS/Solid-State LiDAR Integrated Navigation and Mapping Unit Empowered by HD Point Cloud Map |
| 指導教授: |
江凱偉
Chiang, Kai-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 199 |
| 中文關鍵詞: | 緊耦合 、慣性導航 、全球衛星定位系統 、固態光達 、高精點雲地圖 |
| 外文關鍵詞: | Tightly Coupled, INS, GNSS, Solid-State LiDAR, HD point cloud map |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾十年來,計算力、人工智慧、感測器技術和機器學習的進步顯著加速了自動駕駛系統的發展。如今,自動駕駛車輛正在世界各地的公共道路上進行測試,例如Waymo和Cruise等公司正將這些車輛部署於公共運輸用途。期望自動駕駛能夠在最少人為干預下,在複雜城市環境中達到定位、路線規劃和決策等功能。在安全性的考量下,強大且高精度的導航對於自動駕駛車輛的發展至關重要尤其是在城市環境下。本論文旨在利用車用級感測器以實現在城市環境地區的車道內等級導航(三維均方根誤差小於0.5公尺)。
在透空良好的條件下,傳統上車輛導航依賴全球衛星定位系統。然而GNSS信號易受環境干擾,特別是多路徑和非直視路徑信號,這些訊號干擾會導致定位上的系統性誤差。在這樣的干擾環境中,導航的準確性和穩健性無法滿足自動駕駛車輛的需求。
為了解決GNSS信號干擾的問題,多感測器融合已成為開發穩健自駕車導航系統的解決方案。目前,自動駕駛車輛主要使用機械式光達,因為它具有良好的精度和掃描範圍。由於其體積和重量,對於未來自動駕駛車輛的大量生產來說是不切實際的。本論文提出使用固態光達結合已知高精點雲地圖並利用正態分佈轉換演算法進行車輛姿態和位置估計。固態光達與機械式光達相比,其缺點為掃描範圍角度小,在沒有良好初始位置和姿態下進行點雲匹配時,匹配結果會落入區域最佳估計而非全域最佳估計,造成匹配錯誤的情形發生。
為了克服上述掃描範圍小的問題,本論文提出藉由慣性導航與全球衛星定位系統整合和固態光達感測器相互補的特性,提出一個穩健且低成本的導航製圖單元架構和演算法。其中,慣性導航系統與全球導航衛星系統整合可以為地圖匹配提供良好初始姿態和位置估計。慣性導航系統與全球導航衛星系統整合又可以區分為鬆耦合與緊耦合兩種架構。鬆耦合架構配合實時動態技術可以提供公分級定位精度,但在都市環境下多路徑效應產生的系統誤差無法消除,造成鬆耦合架構過度信賴衛星定位系統的估計。鬆耦合在進行觀測量更新時,由於其架構設計需要至少四個衛星,對於都市挑戰的環境下是相對困難的。相比之下,緊耦合設計無需至少四個衛星就可以向濾波器提供虛擬距離和都普勒觀測量的更新,此作法可以提高在都市挑戰環境下導航的穩定性和軌跡的平滑性。然而為了達到與實時動態技術輔助鬆耦合相當之定位精度,緊耦合設計需要解決虛擬距離系統誤差修正的問題。
為了修正系統誤差,傳統上需要利用差分技術來消除,但差分技術需要足夠多的基準站,基礎建設的成本高,透過高精地圖的測繪,除了提供路面資訊外,也提供了良好的位置和幾何資訊。本論文提出一個次級卡爾曼濾波器,利用固態光達與高精地圖匹配來實時估計每顆衛星的虛擬距離誤差。通過結合緊耦合的慣性導航系統/全球導航衛星系統(INS/GNSS)與固態光達(SSL)和高精地圖匹配的優勢,本論文提出了一成本效益高的固態光達輔助緊耦合INS/GNSS演算法架構,用於城市環境中的自動駕駛車輛導航。本論文提出的系統在嚴苛的城市場景下進行驗證皆可以實現三維30公分內的定位精度,即車道內等級導航要求之精度。
Over the decades, advancements in computing power, artificial intelligence, sensor technology, and machine learning have significantly accelerated the development of autonomous driving systems. Today, autonomous vehicles are being tested on public roads around the world, with companies like Waymo and Cruise leading the way in deploying these vehicles for public and commercial use. The current state of autonomous driving encompasses vehicles capable of navigating complex urban environments with minimal human intervention, relying on sophisticated technologies such as localization, route planning and decision making. Considering safety concerns, robust and high-accuracy navigation in challenging urban environments is vital for the development of autonomous vehicles. This thesis aims to enhance the implementation of automotive-grade sensors for in-lane level navigation (<0.5 m in 3D) under urban challenging areas.
Traditionally, vehicle navigation and positioning systems have relied on the Global Navigation Satellite System (GNSS), especially in open-sky conditions. However, GNSS signals are susceptible to disruptions caused by environmental interferences, notably multipath and non-line-of-sight (NLOS) signal receptions, which introduce systematic errors in position estimation. In such environments, the navigation accuracy and robustness may not meet the requirements of autonomous vehicles.
To resolve the challenge of GNSS signal interference, multi-sensor fusion has emerged as a solution in developing robust navigation systems for autonomous vehicles. At present, the commercial autonomous vehicles mainly use mechanical Light Detection and Ranging (LiDAR) since it has ideal precision. However, it is impractical for its size and weight for mass production of autonomous vehicles in the future. In this thesis, the use of Solid-State LiDAR (SSL) with prior map and the normal distribution transformation (NDT) algorithm for vehicle pose estimation is proposed. Nevertheless, SSL's limited field of view (FoV), when compared to mechanical LiDAR, presents a notable limitation, potentially resulting in NDT matching failures.
To overcome this, this thesis proposes to leverage the complementary of the INS/GNSS integration system with SSL. The INS/GNSS integration system could provide the initial guess for map matching. The INS/GNSS system, which can be divide into loosely and tightly coupled design. The loosely coupled design, aided by GNSS methods like Real-Time Kinematic (RTK), offers centimeter-level accuracy but struggles with systematic errors in urban scenarios and requires at least four satellites. In contrast, the tightly coupled design could provide pseudorange and doppler measurement update to the navigation filter, enhancing navigation solution stability and trajectory smoothness. This design, however, necessitates addressing pseudorange error correction.
This thesis utilizes a secondary Kalman filter to estimate real-time per-satellite pseudorange error using NDT matching positions. By combining the strengths of tightly coupled INS/GNSS and SSL map matching, this thesis proposes a cost-effective SSL-aided tightly coupled INS/GNSS solution for autonomous vehicle navigation in urban challenging environments. The proposed system is evaluated under harsh urban scenarios and could achieve localization accuracy within 30 cm by utilizing the SSL NDT-aided pseudorange error correction filter.
Aggarwal, P., El-Sheimy, N., Noureldin, A., Syed, Z., 2010. MEMS-Based Integrated Navigation. Artech.
Angrisano, A., 2010. GNSS/INS Integration Methods.
Biber, P., Strasser, W., 2003. The normal distributions transform: a new approach to laser scan matching, in: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). IEEE, pp. 2743–2748. https://doi.org/10.1109/IROS.2003.1249285
Chapman, L., Thornes, J.E., Bradley, A. V., 2002. Sky-view factor approximation using GPS receivers. International Journal of Climatology 22, 615–621. https://doi.org/10.1002/joc.649
Chiang, K., Chiu, Y., Srinara, S., Tsai, M., 2023. Performance of LiDAR-SLAM-based PNT with initial poses based on NDT scan matching algorithm. Satellite Navigation 4, 3. https://doi.org/10.1186/s43020-022-00092-0
Chiang, K.W., Tsai, G.J., Chang, H.W., Joly, C., EI-Sheimy, N., 2019. Seamless navigation and mapping using an INS/GNSS/grid-based SLAM semi-tightly coupled integration scheme. Information Fusion 50, 181–196. https://doi.org/10.1016/j.inffus.2019.01.004
Chiang, K.-W., Wang, C.-K., Hong, J.-H., Li, P.-L., Yang, C.-S., Tsai, M.-L., Lee, J., Lin, S., 2022. Verification and validation procedure for high-definition maps in Taiwan. Urban Informatics 1, 18. https://doi.org/10.1007/s44212-022-00014-0
Cortinhal, T., Tzelepis, G., Aksoy, E.E., 2020. SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving.
De Agostino, M., Manzino, A., Marucco, G., 2010. Doppler measurement integration for kinematic real-time GPS positioning. Applied Geomatics 2, 155–162. https://doi.org/10.1007/s12518-010-0031-z
EUSPA, 2020. GNSS User Technology Report EDITOR’S SPECIAL ON SPACE DATA FOR EUROPE. https://doi.org/10.2878/565013
Falco, G., Pini, M., Marucco, G., 2017. Loose and tight GNSS/INS integrations: Comparison of performance assessed in real Urban scenarios. Sensors (Switzerland) 17. https://doi.org/10.3390/s17020255
Farhatullah, Imad, M., Abul Hassan, M., Junaid, H., Ahmad, I., 2020. Navigation System for Autonomous Vehicle: A Survey. Computer Science and Technology Studies.
FutureBridge, 2020. Autonomy Delay: Current Challenges and Bottlenecks.
Grewal, M.S., Weill, L.R., Andrews, A.P., 2007. Global Positioning Systems, Inertial Navigation, and Integration. Wiley. https://doi.org/10.1002/0470099720
Groves, P., 2013. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Second Edition. Artech.
Groves, P.D., 2015. Navigation using inertial sensors. IEEE Aerospace and Electronic Systems Magazine 30, 42–69. https://doi.org/10.1109/MAES.2014.130191
He, Y., Li, J., Liu, J., 2023. Research on GNSS INS & GNSS/INS Integrated Navigation Method for Autonomous Vehicles: A Survey. IEEE Access 11, 79033–79055. https://doi.org/10.1109/ACCESS.2023.3299290
Heinrich, M., Sperl, A., Mittmann, U., Henkel, P., 2018. Reliable Multi-GNSS Real-Time Kinematic Positioning.
Hou, H., 2004. Modeling Inertial Sensors Errors Using Allan Variance UCGE Reports.
IEEE Aerospace and Electronic Systems Society. Gyro and Accelerometer Panel., Institute of Electrical and Electronics Engineers., 1998. IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic gyros. Institute of Electrical and Electronics Engineers.
Jeong, S., Ko, M., Kim, J., 2023. LiDAR Localization by Removing Moveable Objects. Electronics (Switzerland) 12. https://doi.org/10.3390/electronics12224659
Joubert, N., Reid, T., Noble, F., 2020. Developments in Modern GNSS and Its Impact on Autonomous Vehicle Architectures.
Kim, G., Choi, S., Kim, A., 2021. Scan Context++: Structural Place Recognition Robust to Rotation and Lateral Variations in Urban Environments.
Klobuchar, J.A., 1987. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users, IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS.
Konrad, T., Abel, D., 2022. Combining the Benefits of Tightly and Loosely Coupled GNSS/INS Integration in UAV Applications: A Two-Stage Filter Approach, in: Proceedings of the International Technical Meeting of The Institute of Navigation, ITM. Institute of Navigation, pp. 735–741. https://doi.org/10.33012/2022.18172
Li, Xingxing, Huang, J., Li, Xin, Shen, Z., Han, J., Li, L., Wang, B., 2022. Review of PPP–RTK: achievements, challenges, and opportunities. Satellite Navigation 3, 28. https://doi.org/10.1186/s43020-022-00089-9
Li, Y.-H., 2020. Lane-Level Accuracy Navigation Design Based on INS/GNSS/Odometer Semi-Tightly Coupled Integration Scheme with HD Vector Map. https://doi.org/10.6844/NCKU202100195
Li, Z., Cheng, Y., Cui, X., 2019. Precise Fault Isolation Method of INS/GPS/ADS Integrated Navigation System, in: 2019 Chinese Automation Congress (CAC). IEEE, pp. 4171–4175. https://doi.org/10.1109/CAC48633.2019.8996590
Liu, X., Liu, Z., Kong, F., Zhang, F., 2022. Large-Scale LiDAR Consistent Mapping using Hierachical LiDAR Bundle Adjustment.
Liu, Z., Liu, X., Zhang, F., 2022. Efficient and Consistent Bundle Adjustment on Lidar Point Clouds.
Liu, Z., Zhang, F., 2021. BALM: Bundle Adjustment for Lidar Mapping. IEEE Robot Autom Lett 6, 3184–3191. https://doi.org/10.1109/LRA.2021.3062815
Magnusson, M., 2009. The Three-Dimensional Normal-Distributions Transform-an Efficient Representation for Registration, Surface Analysis, and Loop Detection.
Magnusson, M., Lilienthal, A., Duckett, T., 2007. Scan registration for autonomous mining vehicles using 3D‐NDT. J Field Robot 24, 803–827. https://doi.org/10.1002/rob.20204
Nagai, K., Spenko, M., Henderson, R., Pervan, B., 2024. Fault-Free Integrity of Urban Driverless Vehicle Navigation with Multi-Sensor Integration: A Case Study in Downtown Chicago. Navigation, Journal of the Institute of Navigation 71. https://doi.org/10.33012/navi.631
Nassar, S., 2003. Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications.
Noureldin, A., Karamat, T.B., Georgy, J., 2013. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30466-8
Pang, S., Kent, D., Cai, X., Al-Qassab, H., Morris, D., Radha, H., 2018. 3D Scan Registration Based Localization for Autonomous Vehicles - A Comparison of NDT and ICP under Realistic Conditions, in: 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). IEEE, pp. 1–5. https://doi.org/10.1109/VTCFall.2018.8690819
Peter J.G. Teunissen, Oliver Montenbruck, 2017. Springer Handbook oƒ Global Navigation Satellite Systems Teunissen Montenbruck Editors.
Quan, W., Li, J., Gong, X., Fang, J., 2015. INS/CNS/GNSS Integrated Navigation Technology. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45159-5
Sanz Subirana, Jaime., Hernandez-Pajares, Manuel., Juan Zornoza, J.Miguel., 2013. GNSS data processing : Fundamentals and algorithms. European Space Agency.
Savage, P.G., 1998a. Strapdown inertial navigation integration algorithm design part 1: Attitude algorithms. Journal of Guidance, Control, and Dynamics 21, 19–28. https://doi.org/10.2514/2.4228
Savage, P.G., 1998b. Strapdown Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithms. Journal of Guidance, Control, and Dynamics 21, 208–221. https://doi.org/10.2514/2.4242
Scherzinger, B.M., 1996. Inertial Navigator Error Models For Large Headirig Uncertainty.
Shin, E.-H., 2005. UCGE Reports Estimation Techniques for Low-Cost Inertial Navigation.
Shin, E.-H., 2001. UCGE Reports Accuracy Improvement of Low Cost INS/GPS for Land Applications.
Srinara, S., Chiu, Y.T., Tsai, M.L., Chiang, K.W., 2022. HIGH-DEFINITION POINT CLOUD MAP-BASED 3D LiDAR-IMU CALIBRATION FOR SELF-DRIVING APPLICATIONS, in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. International Society for Photogrammetry and Remote Sensing, pp. 271–277. https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-271-2022
Stephenson, S., Moore, T., Edwards, T., Meng, X., Baxendale, A., 2011. Accuracy Requirements and Benchmarking Position Solutions for Intelligent Transportation Location Based Services Accuracy Requirements and Benchmarking Po-sition Solutions for Intelligent Transportation Location Based Services.
Stoyanov, T., Magnusson, M., Lilienthal, A.J., 2012. Point set registration through minimization of the L<inf>2</inf> distance between 3D-NDT models, in: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 5196–5201. https://doi.org/10.1109/ICRA.2012.6224717
Titterton, D., Weston, J., 2004. Strapdown Inertial Navigation Technology. Institution of Engineering and Technology. https://doi.org/10.1049/PBRA017E
Torge, W., 2001. Geodesy. W. de Gruyter.
Verma, P., Hajra, K., Banerjee, P., Bose, A., 2022. Evaluating PDOP in Multi-GNSS Environment. IETE J Res 68, 1705–1712. https://doi.org/10.1080/03772063.2019.1666750
Xu, G., 2007. GPS · Theory, Algorithms and Applications. https://doi.org/https://doi.org/10.1007/978-3-540-72715-6
Xu, W., Cai, Y., He, D., Lin, J., Zhang, F., 2021. FAST-LIO2: Fast Direct LiDAR-inertial Odometry.
Yang, Y., 2008. Tightly Coupled MEMS INS/GPS Integration with INS Aided Receiver Tracking Loops.
Yuksel, Y., El-Sheimy, N., Noureldin, A., 2010. Error modeling and characterization of environmental effects for low cost inertial MEMS units, in: IEEE/ION Position, Location and Navigation Symposium. IEEE, pp. 598–612. https://doi.org/10.1109/PLANS.2010.5507180
Zhang, J., Singh, S., 2017. Low-drift and real-time lidar odometry and mapping. Auton Robots 41, 401–416. https://doi.org/10.1007/s10514-016-9548-2
Zhong, Y., Huang, F., Zhang, J., Wen, W., Hsu, L., 2023. Low‐cost solid‐state LiDAR/inertial‐based localization with prior map for autonomous systems in urban scenarios. IET Intelligent Transport Systems 17, 474–486. https://doi.org/10.1049/itr2.12273
校內:2029-08-14公開