簡易檢索 / 詳目顯示

研究生: 蕭任富
Hsiao, Jen-Fu
論文名稱: 具迴流道震盪型微混合器之數值模擬
Numerical Study of Oscillatory Type Micromixer with Feedback Side-Channels
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 91
中文關鍵詞: 微混合器迴流道震盪V型槽
外文關鍵詞: feedback side-channels, V-gutter, micromixer, oscillation
相關次數: 點閱:141下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,微機電系統在機械、生醫、電機等科技產業有相當大的應用與研究,而其中結合生物科技所發展出的生物晶片更是深受眾人矚目,此一多功能處理晶片的概念整合了微通道、微幫浦、微閥門、微混合器等分析常用元件於一小面積的晶片上,其中微混合器更是在藥物檢測及化學檢測中扮演著很重要的角色。而在此微流場底下與我們所熟知的巨觀流場不同,想要利用產生紊流來促進流體之間的混合是一件困難的事情。因此有許許多多的概念運用在微混合器的設計上,使流體在微尺度下能進行良好的混合。
      本研究是利用初始型微混合器的外型,於混合區內距離噴口某一距離置入V型槽,利用V型槽來引起流場的不穩定,於混合區內形成大大小小的渦流來拉伸流體的接觸面積,進而促進流體之間的混合,甚至於某些特定條件下,噴流受到V型槽阻擋會引發震盪行為,也同樣可以用來改良微混合器的混合效率;在本研究的模擬上則是利用計算流體力學軟體來進行,經由各種設計參數的變化,探討其可能對混合機制所產生的影響,期望模擬出合理且適用的混合效果,藉以提供外型參數及混合效果的評估。

      In recent years, the study and application of Micro Total Analysis System play an important role on machinery, electrical machinery, biomedicine scientific and technological industry. And amount them, the more popular study is biochips, which included microchannel, micropump, microvalve, micromixer and etc. on a chip with very small area. The micromixer is a very important part of medicine and chemical investigations, however, the fluid field involved in the micromixer is different from that in the macro scale. It is because that using turbulence to improve mixing in the micro scale is very difficult, there are more and more ideas designed on the micromixer to achieve a good mixing efficiency.
      This study is a improvement of original type micromixer. It try to input a V-gutter in some distance from the jet to make the fluid field disturbed. The interface of fluids will be stretched by vortices with different size, while the mixing efficiency of micromixer will be improved. Even in some special conditions, putting a V-gutter will cause the jet-oscillation, and it is also another way to make the mixing efficiency better. This study utilize CFD software to design the geometry of micromixer, calculate the fluid field, and discuss the influence on the mixing mechanism when every parameter is been changed. This study expect to simulate reasonable and suitable mixing effect, and prove the estimate about parameters of geometry and mixing efficiency.

    摘要.......................................I Abstract.................................II 誌謝.....................................III 目錄.....................................IV 圖目錄.................................VII 符號說明.............................XI 第一章、 導論.........................................................................................1 1.1 前言.....................................................................................................1 1.2 研究動機與研究目的.........................................................................6 1.3 微混合器簡介.....................................................................................7 1.4 文獻回顧...........................................................................................10 1.5 本文架構...........................................................................................19 第二章、 理論基礎................................................................................20 2.1 物理模型...........................................................................................20 2.2 基本假設...........................................................................................25 2.3 統御方程式.......................................................................................26 2.4 無因次分析.......................................................................................27 2.5 邊界條件...........................................................................................29 2.4 混合效率判定法...............................................................................30 第三章、 數值方法................................................................................31 3.1 控制體積法.......................................................................................33 3.1.1 統御方程式之離散........................................................................34 3.1.2 速度與壓力之關聯性....................................................................37 3.1.3 SIMPLEC演算法.............................................................................40 3.2 收斂標準............................................................................................41 3.3 軟體計算scheme與鬆弛係數............................................................42 第四章、 結果與討論.............................................................................44 4.1 網格測試............................................................................................44 4.2 具V型槽微混合器的二維研究.........................................................46 4.3 具V型槽微混合器的三維研究…......................................................55 4.4 具V型槽微混合器的三維壓力分布研究.........................................63 4.5 對震盪行為的初步研究…................................................................68 第五章、 結論與未來展望.....................................................................85 5.1 結論...................................................................................................85 5.2 未來展望............................................................................................87 參考文獻....................................................................................................88 自述............................................................................................................91

    [1] A. Manzs, N. Graber, and H. M. Widmer, “Miniaturized Total Analysis Systems:A Novel Concept for Chemical Sensing”, Sensors and Actuators, Vol. B1, pp. 244-248, 1990.
    [2] 王克勤, “新型微混合器之設計與流場分析”, 國立成功大學機械工程研究所碩士論文, 2002.
    [3] S. Honda, “On the Role of a Target and Side Walls to Fluidic Oscillation”, Flucome 2000, Aug. 13-17, pp. 16-19, 2000.
    [4] E. L. Cussler, Diffusion Mass Transfer in Fluid Systems, New York: Cambridge University Press, 1984.
    [5] J. M. Ottino, The kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press,. Cambridge (UK), 1989.
    [6] R. M. Moroney, R. M. White, and R. T. Howe, “Ultrasonically induced microtransport”, IEEE Micro Electro Mechanical Systems, MEMS’91, Proceedings, 277-282, 1991.
    [7] X. Zhu, and E. S. Kim, “Microfluidic Motion Generation with Acoustic Waves”, Sensors and Actuators, Vol.66, 355-360, 1998.
    [8] Z. Yang, H. Goto, M. Matsumoto, and R. Maeda, “Ultrasonic Micromixer for Microfluidic Systems”, Electrophoresis, Vol. 21, pp. 116-119, 2000.
    [9] V. Vivek, Y. Zeng, and E. S. Kim, “Novel Acoustic-Wave Micromixer”, IEEE International Micro Electro Mechanical Systems Conference, Miyazaki, Japan, January 23-27, pp. 668-673, 2000.
    [10] A. Deshmukh, D. Liepmann, and A. P. Pisano, “Continuous Micromixer with Pulsatile Micropumps”, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 73-76, 2000.
    [11] A. Deshmukh, D. Liepmann, and A. P. Pisano, “Characterization of a Micro-Mixing, Pumping, and Valving System”, Proceedings of the 11th Int. Solid-State Sensors and Actuators, Munich, Germany, pp. 950-953, 2001.
    [12] J. Evans, D. Liepman, and A. P. Pisano, “Planar Laminar Mixer”, Proceedings of IEEE MEMS Symposium, pp. 96-101, 1997.
    [13] J. H. Tsai, and L. Lin, “Active Microfluidic Mixer and Gas Bubble Filter Driven by Thermal Bubble Micropump”, Sensors and Actuators A, Vol. 97-98, pp. 665-671, 2002.
    [14] L. H. Lu, K. S. Ryu, and C. Liu, “A Magnetic Microstirrer and Array for Microfluidic Mixing”, Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp. 462-469, 2002.
    [15] L. Glasgow, and N. Aubry, “Enhancement of Microfluidic Mixing Using Time Pulsing”, Journal of Lab on a Chip, Vol. 3, pp. 114-120, 2003.
    [16] R. Miyake, T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman, “Micro Mixer with Fast Diffusion”, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, pp. 248-283, 1993.
    [17] M. Elwenspoek, T. S. J. Lammerink, R. Miyake, and J. H. J. Fluitman, “Towards Integrated Microliquid Handing Systems”, Journal of Micromechanics and Microengineering, Vol. 4, pp. 227-245, 1994.
    [18] M. Koch, H. Witt, A. G. R. Evans, and A. Brunnschweiler, “Improved Characterization Technique for Micromixers”, Journal of Micromechanics and Microengineering, Vol. 9, pp. 156-158, 1999.
    [19] F. G. Bessoth, A. J. deMello, and A. Manz, “Microstructure for efficient continuous flow mixing”, Anal. Commun., Vol. 36, pp. 213-215, 1999.
    [20] V. P. Andreev, S. B. Koleshko, D. A. Holman, L. D. Scampavia, and G. D. Christian, “Hydrodynamics and Mass Transfer of the Coaxial Jet Mixer in Flow Injection Analysis”, Analytical Chemistry, Vol. 71, No. 11, pp. 2199-2204, 1999.
    [21] T. T. Veenstra, T. S. J. Lammerink, M. C. Elwenspoek, and A. van den Berg, “Characterization Method for a New Diffusion Mixer Applicable in Micro Flow Injection Analysis Systems”, Journal of Micromechanics and Microengineering, Vol. 9, pp. 199-202, 1999.
    [22] W. Ehrfeld, K. Golbig, V. Hessel, H. Lowe, and T. Richter, “Characterization of mixing in micromixer by a test reaction: single mixing units and mixer arrays”, Ind. Eng. Chem. Res., Vol. 38, pp. 1075-1082, 1999.
    [23] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, “Passive Mixing in a Three-Dimensional Serpentine Microchannel”, Journal of Microelectromechanical Systems, Vol. 9, No. 2, pp. 190-197, 2000.
    [24] H. Bing, J. B. Brian, Z. Xiang, Z. Roujian, and E. R. Fred, “A Picoliter-Volume Mixer for Microfluidic Analytical Systems”, Analytical Chemistry, Vol. 73, pp. 1942-1947, 2001.
    [25] A. Bertsch, S. Heimgartner, P. Cousseau, and P. Renaud, “3D Micromixers – Downscaling Large Scale Industrial Static Mixers”, presented at IEEE MEMS Workshop, Interlaken, Switzerland, 2001.
    [26] T. J. Johnson, D. Ross, and L. E. Locascio, “Rapid Microfluidic Mixing”, Analytical Chemistry, Vol. 74, pp. 45-51, 2002.
    [27] A. D. Strook, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, “Chaotic Mixer for Microchannels”, Science, Vol. 295, pp. 647-651, 2002.
    [28] A. D. Strook, and G. M. Whitesides, “Controlling Flows in Microchannels with Patterned Surface Charge and Topography”, Accounts of Chemical Research, Vol. 36, No. 8, pp. 597-604, 2003.
    [29] 林文星, “微混合器之暫態流場計算與分析”, 國立成功大學機械工程研究所碩士論文, 2003.
    [30] U. Gebhard, H. Hein, and U. Schmidt, “Numerical Investigation of Fluidic Micro-Oscillators”, Journal of Micromechanics and Microengineering, Vol. 6, pp. 115-117, 1996.
    [31] U. Gebhard, H. Hein, E. Just, and P. Ruther, “Combination of a Fluidic Micro-Oscillators and Micro-Actuator in LIGA-Technique for Medical Application”, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, Vol. June 16-19, pp. 761-764, 1997.
    [32] J. P. Van Doormaal, and G. D. Raithby, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.

    下載圖示 校內:2008-06-26公開
    校外:2012-06-26公開
    QR CODE