簡易檢索 / 詳目顯示

研究生: 阮雪幸
Hanh, Nguyen Thi Tuyet
論文名稱: 支架膜以提高全固態鋰電池高分子電解質的穩定性和鋰離子遷移率
Scaffold Membranes to Upgrade Stability and Li+-Mobility of Polymer Electrolytes for All-Solid-State Lithium Batteries
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 77
外文關鍵詞: Lithium ion batteries, solid polymer electrolyte, high mechanical modulus, suppress lithium dendrite growth
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Lithium ion batteries (LIBs) use Li metal as the anode to increase energy density,becoming an attractive tendency during the development of energy storage systems in recent years. However, their performance is confined by uncontrolled Li dendrite growth. Solid polymer electrolytes (SPEs) become an effective alternative to commercial liquid electrolytes in limiting the growth of Li dendrite by their natural solidity. Moreover, Li ion diffusivity and mobility of the counter anions in SPE are the prerequisite influential factors in LMB performance. These characteristics are assessed by ionic conductivity and lithium transference number. Herein, we build up a concept of SPE by incorporating a porous PVdF-HFP skeleton with a cross-linked polymer electrolyte (NSPE). This modified SPE membrane with high mechanical modulus, named as P-NSPE. P-NSPE presents an acceptable conductivity of 1.11 × 10-4 Scm-1 at 30 oC and improved lithium transference number of 0.45, since NSPE act as the ion transport carrier and PVdF-HFP porous framework act as the efficient pathways for lithium ion diffusion. Besides that, the excellent interfacial stability against the lithium metal electrode, indicating highly stable lithium plating/stripping reversibility and the significantly suppressed Li dendrite growth. The impressed cycling performance of the Li/P-NSPE/LFP cells has resulted from the restriction of lithium dendrite propagation. The battery retains 83% of discharge capacity after 200 cycles under 0.06 mA cm-2 at 30 oC.

    Abstract I Acknowledgement II List of Table VI List of Figures VII 1. Introduction 1 1.1. Overview on electric energy storage (EES) 1 1.2. Lithium-ion battery 2 1.2.1. The basic working principles 3 1.2.2. Cathode materials 4 1.2.2.1. Layered oxides 6 1.2.2.2. Spinel oxides 7 1.2.2.3. Poyanion oxides 9 1.2.3. Anode materials 10 1.2.3.1. Carbon-based materials 11 1.2.3.2. Alloy materials 12 1.2.3.3. Lithium tatinium oxide (Li4Ti5O12) 12 1.2.4. Electrolytes 12 1.2.4.1. Liquid electrolytes 13 1.2.4.2. Ionic liquid 13 1.2.4.3. Gel polymer electrolytes (GPEs) 14 1.2.4.4. Solid electrolyte 15 1.3. The requirements of SPEs 17 1.4. The ion transfer mechanism of SPEs 19 doi:10.6844/NCKU202002062 1.5. Dendrite growth in SPEs 20 1.5.1. Dendrite growth mechanisms 20 1.5.2. Strategies to suppress dendrite growth 21 1.6. The basic of PVdF-HFP copolymer 24 1.7. The basic of NSPE 25 1.8. A concept of SPE prepared by incorporating PVdF-HFP with NSPE (PNSPE) 27 1.9. Principle of analyzing methods 29 1.9.1. Scanning electron microscope (SEM) 29 1.9.2. Raman spectroscopy 30 1.9.3. Thermogravimetric analysis (TGA) 32 1.9.4. Differential Scanning Calorimetry (DSC) 32 1.9.5. X-ray Powder Diffraction (XRD) 33 2. Experimental 34 2.1. Materials 34 2.2. Preparation of porous PVdF-HFP membrane 35 2.3. Synthesis of thermally crosslinked solid electrolyte solution (NSPE) 35 2.4. Preparation of solid polymer electrolyte (SPE) membrane (P-NSPE) 36 2.5. Prepare the cathode material 36 2.6. Measurements 37 2.6.1. Structure characterization 37 2.6.2. Electrochemical testing 37 3. Results and discussion 40 3.1. Synthesis of porous PVdF-HFP membranes 40 3.2. Thermal properties of the prepared SPEs 45 3.3. Electrochemical properties 48 3.4.Interfacial stability against lithium metal electrode 55 3.5. Cell performance 58 4. Summary and conclusion 60 References 61

    [1]. Ghassan Zubi, Rodolfo Dufo-López, Monica Carvalho, Guzay Pasaoglu, The Lithium-Ion Battery: State of the Art and Future Perspectives, Renew. Sust. Energ. Rev., 2018, 89, 292–308. https://doi.org/10.1016/j.rser.2018.03.002.
    [2]. Xin-Bing Cheng, Rui Zhang, Chen-Zi Zhao, and Qiang Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chem. Rev., 2017, 117, 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115.
    [3]. Zahid Ali Ghazi, Zhenhua Sun, Chengguo Sun, Fulai Qi, Baigang An, Feng Li, and Hui-Ming Cheng, Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries, Small, 2019, 15, 1900687. https://doi.org/10.1002/smll.201900687.
    [4]. Matthew Li, Jun Lu, Zhongwei Chen, and Khalil Amine, 30 Years of Lithium-Ion Batteries, Adv. Mater., 2018, 30, 1800561. https://doi.org/10.1002/adma.201800561.
    [5]. Feng Zheng, Masashi Kotobuki, Shufeng Song, Man On Lai, Li Lu, Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries, J. Power Sources, 2018, 389, 198–213. https://doi.org/10.1016/j.jpowsour.2018.04.022.
    [6]. Arumugam Manthiram, A Reflection on Lithium-Ion Battery Cathode Chemistry, Nat. Commun., 2020, 11, 1550. https://doi.org/10.1038/s41467-020-15355-0.
    [7]. Alain Mauger, Christian M. Julien, Andrea Paolella, Michel Armand and Karim Zaghib, Building Better Batteries in the Solid State: A Review, Materials, 2019, 12, 3892. https://doi.org/10.3390/ma12233892.
    [8]. Taehoon Kim, Wentao Song, Dae-Yong Son, Luis K. Ono and Yabing Qi, Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies, J. Mater. Chem. A, 2019, 7, 2942. https://doi.org/10.1039/c8ta10513h.
    [9]. Pallavi Verma, Pascal Maire, Petr Novák, A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries, Electrochim. Acta, 2010, 55, 6332–6341, https://doi.org/10.1016/j.electacta.2010.05.072.
    [10]. Bo Xu, Danna Qian, Ziying Wang, Ying Shirley Meng, Recent Progress in Cathode Materials Research for Advanced Lithium Ion Batteries, Mater. Sci. Eng. R, 2012, 73, 51–65. https://doi.org/10.1016/j.mser.2012.05.003.
    [11]. Zhangxian Chen, Weixin Zhang and Zeheng Yang, A Review on Cathode Materials for Advanced Lithium Ion Batteries: Microstructure Designs and Performance Regulations, Nanotechnology, 2020, 31, 012001. https://doi.org/10.1088/1361-6528/ab4447.
    [12]. Naoki Nitta, Feixiang Wu, Jung Tae Lee and Gleb Yushin, Li-Ion Battery Materials: Present and Future, Mater. Today, 2015, 18, 5, 252-264. https://doi.org/10.1016/j.mattod.2014.10.040.
    [13]. Arumugam Manthiram, A Reflection on Lithium-Ion Battery Cathode Chemistry, Nat. Commun., 2020, 11, 1550. https://doi.org/10.1038/s41467-020-15355-0.
    [14]. Ruoheng Sun, Peter Jakes, Svitlana Eurich, Désirée van Holt, Shuo Yang, Melanie Homberger, Ulrich Simon, Hans Kungl, Rüdiger, A. Eichel, Secondary Phase Formation in Spinel Type LiMn2O4 Cathode Materials for Lithium Ion Batteries: Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy, Appl Magn Reson, 2018, 49. https://doi.org/10.1007/s00723-018-0983-4.
    [15]. Shumei Dou, Review and Prospects of Mn-Based Spinel Compounds as Cathode Materials for Lithium-Ion Batteries, Ionics, 2015, 21, 3001–3030. https://doi.org/10.1007/s11581-015-1545-5.
    [16]. Jun Lu, Tianpin Wu and Khalil Amine, State-of-the-Art Characterization Techniques for Advanced Lithium-Ion Batteries, Nat. Energy, 2017, 2, 17011. https://doi.org/10.1038/nenergy.2017.11.
    [17]. Claus Daniel, Debasish Mohanty, Jianlin Li, and David L. Wood, Cathode Materials Review, AIP Conf. Proc, 2014, 26. https://doi.org/10.1063/1.4878478.
    [18]. Wen Qi, Joseph G. Shapter, Qian Wu, Ting Yin, Guo Gao and Daxiang Cui, Nanostructured Anode Materials for Lithium-Ion Batteries: Principle, Recent Progress and Future Perspectives, J. Mater. Chem. A, 2017, 5, 19521. https://doi.org/10.1039/c7ta05283a.
    [19]. Elham Kamali Heidari, Ata Kamyabi-Gol, Mahmoud Heydarzadeh Sohi, Abolghasem Ataie, Electrode Materials for Lithium Ion Batteries: A Review, J. Ultrafine Grained Nanostruct. Mater, 2018, 51, 1, 1-12. https://doi.org/10.22059/JUFGNSM.2018.01.01.
    [20]. Lizhen Long, Shuanjin Wang, Min Xiao and Yuezhong Meng, Polymer Electrolytes for Lithium Polymer Batteries, J. Mater. Chem. A, 2016, 4, 10038. https://doi.org/10.1039/c6ta02621d.
    [21]. Qingsong Wang, Lihua Jiang, Yan Yu, Jinhua Sun, Progress of Enhancing the Safety of Lithium Ion Battery from the Electrolyte Aspect, Nano Energy, 2019, 55, 93-114. https://doi.org/10.1016/j.nanoen.2018.10.035.
    [22]. Qi Li, Juner Chen, Lei Fan, Xueqian Kong, Yingying Lu, Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond, Green Energy Environ., 2016, 1, 18-42. https://doi.org/10.1016/j.gee.2016.04.006.
    [23]. Qingsong Wang, Binbin Mao, Stanislav I. Stoliarov, Jinhua Sun, A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies, Prog. Energy Combust, 2019, 73, 95–131. https://doi.org/10.1016/j.pecs.2019.03.002.
    [24]. Andrea Balducci, Ionic Liquids in Lithium-Ion Batteries, TOPICS CURR CHEM, 2017, 375, 20. https://doi.org/10.1007/s41061-017-0109-8.
    [25]. Stefano Caimi, Hua Wu, and Massimo Morbidelli, PVdF-HFP and Ionic Liquid-Based, Freestanding Thin Separator for Lithium-Ion Batteries, ACS Appl. Energy Mater., 2018, 1, 10, 5224–5232. https://doi.org/10.1021/acsaem.8b00860.
    [26]. Qing Zhao, Sanjuna Stalin, Chen-Zi Zhao and Lynden A. Archer, Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries, Nat. Rev. Mater., 2020, 5, 229–252. https://doi.org/10.1038/s41578-019-0165-5.
    [27]. Feng Zheng, Masashi Kotobuki, Shufeng Song, Man On Lai, Li Lu, Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries, J. Power Sources, 2018, 389, 198–213. https://doi.org/10.1016/j.jpowsour.2018.04.022.
    [28]. Theodosios Famprikis, Pieremanuele Canepa , James A. Dawson, M. Saiful Islam  and Christian Masquelier, Fundamentals of Inorganic Solid-State Electrolytes for Batteries, Nat. Mater., 2019, 18, 1278-1291. https://doi.org/10.1038/s41563-019-0431-3.
    [29]. Penghui Yao, Haobin Yu, Zhiyu Ding, Yanchen Liu, Juan Lu, Marino Lavorgna, Junwei Wu and Xingjun Liu, Review on Polymer-Based Composite Electrolytes for Lithium Batteries, Front. Chem., 2019, 7, 522. https://doi.org/10.3389/fchem.2019.00522.
    [30]. O. V. Yarmolenko, A. V. Yudina, and K. G. Khatmullina, Nanocomposite Polymer Electrolytes for the Lithium Power Sources (A Review), Russ. J. Electrochem., 2018, 54, 4. https://doi.org/10.1134/S1023193518040092.
    [31]. Prasad Raut, Si Li, Yu-Ming Chen, Yu Zhu, and Sadhan C. Jana, Strong and Flexible Composite Solid Polymer Electrolyte Membranes for Li-Ion Batteries, ACS Omega, 2019, 4, 18203-18209. https://doi.org/10.1021/acsomega.9b00885.
    [32]. Yu Jiang, Xuemin Yan, Zhaofei Ma, Ping Mei, Wei Xiao, Qinliang You and Yan Zhang, Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries, Polymers, 2018, 10, 1237. https://doi.org/10.3390/polym10111237.
    [33]. V. Fleury, J.-N. Chazalviel, and M. Rosso, Coupling of Drift, Diffusion, and Electroconvection, in the Vicinity of Growing Electrodeposits, Phys Rev E, 1993, 48 (2), 1279-1295. https://doi.org/10.1103/physreve.48.1279.
    [34]. Renjie Chen, Wenjie Qu, Xing Guo, Li Liab and Feng Wu, The Pursuit of Solid-State Electrolytes for Lithium Batteries: From Comprehensive Insight to Emerging Horizons, Mater. Horiz., 2016, 3, 487. https://doi.org/10.1039/c6mh00218h.
    [35]. Xiaowen Sun, Xinyue Zhang, Qingtao Ma, Xuze Guan, Wei Wang, Jiayan Luo, Revisiting the Electroplating Process for Lithium Metal Anodes, Angew. Chemie, 2020, 59, 17, 6665-6674. https://doi.org/10.1002/anie.201912217.
    [36]. Daxian Cao, Xiao Sun, Qiang Li, Avi Natan, Pengyang Xiang, and Hongli Zhu, Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations, Matter, 2020, 2, 1-38. https://doi.org/10.1016/j.matt.2020.03.015.
    [37]. Jennifer L. Schaefer, Dennis A. Yanga, and Lynden A. Archer, High Lithium Transference Number Electrolytes via Creation of 3 Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites, Chem. Mater., 2013, 25, 834-839. https://doi.org/10.1021/cm303091j.
    [38]. Renaud Bouchet, Sébastien Maria, Rachid Meziane, Abdelmaula Aboulaich, Livie Lienafa, Jean-Pierre Bonnet, Trang N. T. Phan, Denis Bertin, Didier Gigmes, Didier Devaux, Renaud Denoyel and Michel Armand, Single-Ion BAB Triblock Copolymers as Highly Efficient Electrolytes for Lithium-Metal Batteries, Nat. Mater., 2013, 12, 452–457. https://doi.org/10.1038/NMAT3602.
    [39]. Wei Liu, Dingchang Lin, Allen Pei, and Yi Cui, Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement, J. Am. Chem. Soc., 2016, 138, 15443-15450. https://doi.org/10.1021/jacs.6b08730.
    [40]. Weidong Zhou, Shaofei Wang, Yutao Li, Sen Xin, Arumugam Manthiram, and John B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte, J. Am. Chem. Soc., 2016, 138, 30, 9385–9388. https://doi.org/10.1021/jacs.6b05341.
    [41]. Chen-Zi Zhao, Peng-Yu Chen, Rui Zhang, Xiang Chen, Bo-Quan Li, Xue-Qiang Zhang, Xin-Bing Cheng, Qiang Zhang, An Ion Redistributor for Dendrite-Free Lithium Metal Anodes, Sci. Adv., 2018, 4, 11, eaat3446. https://doi.org/10.1126/sciadv.aat3446.
    [42]. Guangmei Hou, Xiaohua Ren, Xiaoxin Ma, Le Zhang, Wei Zhai, Qing Ai, Xiaoyan Xu, Lin Zhang, Pengchao Si, Jinkui Feng, Fei Ding, Lijie Ci, Dendrite-Free Li Metal Anode Enabled by a 3D Free-Standing Lithiophilic Nitrogen-Enriched Carbon Sponge, J. Power Sources, 2018, 386, 77–84. https://doi.org/10.1016/j.jpowsour.2018.03.049.
    [43]. Yanbin Shen, Yantao Zhang, Shaojie Han, Jiawei Wang, Zhangquan Peng, and Liwei Chen, Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes, Joule, 2018, 2, 9, 1674-1689. https://doi.org/10.1016/j.joule.2018.06.021.
    [44]. Qing Zhao, Sanjuna Stalin, Chen-Zi Zhao and Lynden A. Archer, Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries, Nat. Rev. Mater., 2020, 5, 229–252, https://doi.org/10.1038/s41578-019-0165-5.
    [45]. Feihu Guo, Chen Wu, Shengli Chen, Xinping Ai, Faping Zhong, Hanxi Yang, and Jiangfeng Qian, Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode, ACS Materials Lett., 2020, 2, 4, 358–366. https://doi.org/10.1021/acsmaterialslett.0c00001.
    [46]. Guoxing Li , Zhe Liu, Qingquan Huang, Yue Gao, Michael Regula, Daiwei Wang, Long-Qing Chen and Donghai Wang, Stable Metal Battery Anodes Enabled by Polyethylenimine Sponge Hosts by Way of Electrokinetic Effects, Nat. Energy, 2018, 3, 1076–1083. https://doi.org/10.1038/s41560-018-0276-z.
    [47]. Peichao Zou, Yang Wang, Sum-Wai Chiang, Xuanyu Wang, Feiyu Kang & Cheng Yang, Directing Lateral Growth of Lithium Dendrites in Micro-Compartmented Anode Arrays for Safe Lithium Metal Batteries, Nat. Commun., 2018, 9, 464. https://doi.org/10.1038/s41467-018-02888-8.
    [48]. Lei Shi, Rong Wang, Yiming Cao, Chunsheng Feng, David Tee Liang, Joo Hwa Tay, Fabrication of Poly(vinylidene fluoride-co hexafluropropylene) (PVDF-HFP) Asymmetric Microporous Hollow Fiber Membranes, J. Membr. Sci., 2007, 305, 215–225. https://doi.org/10.1016/j.memsci.2007.08.012.
    [49]. Xinya Wang, Changfa Xiao , Hailiang Liu, Qinglin Huang, Hao Fu, Fabrication and Properties of PVDF and PVDF-HFP Microfiltration Membranes, J. Appl. Polym. Sci., 2018, 135, 40, 46711. https://doi.org/10.1002/app.46711.
    [50]. Ilhwan Kim, Bong Sung Kim, Seunghoon Nam, Hoo-Jeong Lee, Ho Kyoon Chung, Sung Min Cho, Thi Hoai Thuong Luu, Seungmin Hyun and Chiwon Kang, Cross-Linked Poly(vinylidene fluoride-cohexafluoropropene) (PVDF-co-HFP) Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED), Materials, 2018, 11, 543. https://doi.org/10.3390/ma11040543.
    [51]. W Liu, X K Zhang, F Wu1 and Y Xiang, A Study on PVDF-HFP Gel Polymer Electrolyte for Lithium-Ion Batteries, Mater. Sci. Eng., 2017, 213, 012036. https://doi.org/10.1088/1757-899X/213/1/012036.
    [52]. Manoj Kumar, S.S. Sekhon, Role of Plasticizer’s Dielectric Constant on Conductivity Modification of PEO–NH4F Polymer Electrolytes, Eur. Polym., 2002, 38, 1297–1304. https://doi.org/10.1016/S0014-3057(01)00310-X.
    [53]. C R Ratri, Q Sabrina and T Lestariningsih, Application of LiBOB-PVdF-co-HFP Solid Polymer Electrolyte in Li-Ion Battery and Comparison to Its Conventional Counterpart, Journal of Physics: Conf. Series, 2019, 1191, 012025. https://doi.org/10.1088/1742-6596/1191/1/012025.
    [54]. Xinya Wang, Changfa Xiao, Hailiang Liu, Mingxing Chen, Junqiang Hao and Yanjie Wu, A Study on Fabrication of PVDF-HFP/PTFE Blend Membranes with Controllable and Bicontinuous Structure for Highly Effective Water-In-Oil Emulsion Separation, RSC Adv., 2018, 8, 27754. https://doi.org/10.1039/c8ra04547j.
    [55]. Yun-Chae Jung, Myung-Soo Park, Duck-Hyun Kim, Makoto Ue, Ali Eftekhari and Dong-Won Kim, Room-Temperature Performance of Poly(Ethylene Ether Carbonate)- Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries, Sci. Rep., 2017, 7, 17482. https://doi.org/10.1038/s41598-017-17697-0.
    [56]. Hicham Ben youcef, Oihane Garcia-Calvo, Nerea Lago, Shanmukaraj Devaraj, Michel Armand, Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries, Electrochim. Acta, 2016, 220, 587–594. https://doi.org/10.1016/j.electacta.2016.10.122.
    [57]. Zhigang Xue, Dan Heb and Xiaolin Xie, Poly(ethylene oxide)-Based Electrolytes for Lithium-Ion Batteries, J. Mater. Chem. A, 2015, 3, 19218-19253. https://doi.org/10.1039/C5TA03471J.
    [58]. Zhigang Xue, Dan He and Xiaolin Xie, Poly(ethylene oxide)-Based Electrolytes for Lithium-Ion Batteries, J. Mater. Chem. A, 2015, 3, 19218-19253. https://doi.org/10.1039/C5TA03471J.
    [59]. H. M. J. C. Pitawala, M. A. K. L. Dissanayake, V. A. Seneviratne, B.-E. Mellander and I. Albinson, Effect of Plasticizers (EC or PC) on the Ionic Conductivity and Thermal Properties of the (PEO)9LiTf: Al2O3 Nanocomposite Polymer Electrolyte System, J Solid State Electr, 2008, 12, 783–789. https://doi.org/10.1007/s10008-008-0505-7.
    [60]. Zhimin Dang, C.W. Nan and Ming Li, Thermal, Electrical and Mechanical Properties of Plasticized Polymer Electrolytes Based on PEO/P(VDF-HFP) Blends, Electrochim. Acta, 2002, 48(2), 205-209. https://doi.org/10.1016/S0013-4686(02)00603-5.
    [61]. I. Kelly, J.R. Owen and B.C.H. Steele, Mixed Polyether Lithium-Ion Conductors, J. Electroanal. Chem. Interf. Electrochem., 1984, 168, 467-478. https://doi.org/10.1016/0368-1874(84)87116-6.
    [62]. Sandhya Gupta, Pramod K Singh and B Bhattacharya, Low-Viscosity Ionic Liquid–Doped Solid Polymer Electrolytes: Electrical, Dielectric, and Ion Transport Studies, High Perform. Polym., 2018, 30, 8. https://doi.org/10.1177/0954008318778763.
    [63]. Chih-Hao Tsao, Mitsuru Ueda, Ping-Lin Kuo, Synthesis and Characterization of Polymer Electrolytes Based on Cross-linked Phenoxy-Containing Polyphosphazenes, J Polym Sci Pol Chem, 2016, 54, 352-358. https://doi.org/10.1002/pola.27781.
    [64]. Jimin Shim, Dong-Gyun Kim, Hee Joong Kim, Jin Hong Lee, Ji-Hoon Baik and Jong-Chan Lee, Novel Composite Polymer Electrolytes Containing Poly(ethylene glycol)-Grafted Graphene Oxide for All-Solid-State Lithium-Ion Battery Applications, J. Mater. Chem. A, 2014, 2, 13873. https://doi.org/10.1039/c4ta02667e.
    [65]. Jimin Shim, Dong-Gyun Kim, Jin Hong Lee, Ji Hoon Baik and Jong-Chan Lee, Synthesis and Properties of Organic/Inorganic Hybrid Branched-Graft Copolymers and their Application to Solid-State Electrolytes for High Temperature Lithium-Ion Batteries, Polym. Chem., 2014, 5, 3432. https://doi.org/10.1039/c4py00123k.
    [66]. Shih-Ting Hsu, Binh T. Tran, Ramesh Subramani, Hanh T.T. Nguyen, Arunkumar Rajamani, Ming-Yu Lee, Sheng-Shu Hou, Yuh-Lang Lee, Hsisheng Teng, Free-Standing Polymer Electrolyte for All-Solid-State Lithium Batteries Operated at Room Temperature, J. Power Sources, 2020, 449, 227518. https://doi.org/10.1016/j.jpowsour.2019.227518.
    [67]. Wenyan Shang, Chaoqun Niu, Guangping Chen , Yubing Chen , Jie Du, Anion-Inhibited Solid Framework Polymer Electrolyte for Dendrite-Free Lithium Metal Batteries, Electrochim. Acta, 2020, 338, 135902. https://doi.org/10.1016/j.electacta.2020.135902.
    [68]. Qiwei Pan , Derrick M. Smith , Hao Qi , Shijun Wang , and Christopher Y. Li, Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries, Adv. Mater., 2015, 27, 5995–6001. https://doi.org/10.1002/adma.201502059.
    [69]. Hanjun Zhang, Sunil Kulkarni, and Stephanie L. Wunder, Blends of POSS-PEO(n=4)8 and High Molecular Weight Poly(ethylene oxide) as Solid Polymer Electrolytes for Lithium Batteries, J. Phys. Chem. B, 2007, 111, 3583-3590. https://doi.org/10.1021/jp064585g.
    [70]. Dapeng Shang, Jifang Fu, Qi Lu, Liya Chen, Jintao Yin, Xing Dong, Yufeng Xu, Rongrong Jia, Shuai Yuan, Yi Chen, Wei Deng, A Novel Polyhedral Oligomeric Silsesquioxane Based Ionic Liquids (POSS-ILs) Polymer Electrolytes for Lithium Ion Batteries, Solid State Ion., 2018, 319, 247–255. https://doi.org/10.1016/j.ssi.2018.01.050.
    [71]. Hui Zhou, Qun Ye and Jianwei Xu, Polyhedral Oligomeric Silsesquioxane-Based Hybrid Materials and their Applications, Mater. Chem. Front., 2017, 1, 212. https://doi.org/10.1039/c6qm00062b.
    [72]. Weihua Zhou, Shuaishuai Yuan, Licheng Tan, Yiwang Chen, Yulan Huang, Crystallization, Morphology, and Mechanical Properties of Poly(butylene succinate)/Poly(ethylene oxide)- Polyhedral Oligomeric Silsesquioxane Nanocomposites, Polym Eng Sci, 2012, 52, 10, 2063-2070. https://doi.org/doi.org/10.1002/pen.23160.
    [73]. Peng Bai, Ju Li, Fikile R. Brushetta and Martin Z. Bazant, Transition of Lithium Growth Mechanisms in Liquid Electrolytes, Energy Environ. Sci., 2016, 9, 3221. https://doi.org/10.1039/c6ee01674j.
    [74]. Zhanlai Ding, Jianlong Li, Jiao Li, and Cunran An, Review-Interfaces: Key Issue to Be Solved for All Solid-State Lithium Battery Technologies, J. Electrochem. Soc., 2020, 167, 070541. https://doi.org/10.1149/1945-7111/ab7f84.
    [75]. Mukul D. Tikekar, Lynden A. Archer, Donald L. Koch, Stabilizing Electrodeposition in Elastic Solid Electrolytes Containing Immobilized Anions, Sci. Adv., 2016, 2, 7, e1600320. https://doi.org/10.1126/sciadv.1600320.
    [76]. Weidong Zhang, Houlong L. Zhuang, Lei Fan Lina Gao, Yingying Lu, A “Cation-Anion Regulation” Synergistic Anode Host for Dendrite-Free Lithium Metal Batteries, Sci. Adv., 2018, 4, eaar4410. https://doi.org/10.1126/sciadv.aar4410.
    [77]. Ilhwan Kim, Bong Sung Kim, Seunghoon Nam, Hoo-Jeong Lee, Ho Kyoon Chung, Sung Min Cho, Thi Hoai Thuong Luu, Seungmin Hyun, and Chiwon Kang, Cross-Linked Poly(vinylidene fluoride-cohexafluoropropene) (PVDF-co-HFP) Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED), Materials, 2018, 11, 543. https://doi.org/10.3390/ma11040543.
    [78]. Yunyun Zhong, Lei Zhong, Shuanjin Wang, Jiaxiang Qin, Dongmei Han, Shan Ren, Min Xiao, Luyi Sun and Yuezhong Meng, Ultrahigh Li-Ion Conductive Single-Ion Polymer Electrolyte Containing Fluorinated Polysulfonamide for Quasi-Solid-State Li-Ion Batteries, J. Mater. Chem. A, 2019, 7, 24251. https://doi.org/10.1039/c9ta08795h.
    [79]. Ji-Hyung Han, Edwin Khoo, Peng Bai & Martin Z. Bazant, Over-Limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores, Sci. rep., 2015, 4, 7056. https://doi.org/10.1038/srep07056.
    [80]. Chen Cao, Yu Li, Yiyu Feng, Cong Peng, Zeyu Li, Wei Feng, A Solid-State Single-Ion Polymer Electrolyte with Ultrahigh Ionic Conductivity for Dendrite-Free Lithium Metal Batteries, Energy Storage Mater., 2019, 19, 401–407. https://doi.org/10.1016/j.ensm.2019.03.004.
    [81]. Yingying Lu , Mukul Tikekar , Ritesh Mohanty , Kenville Hendrickson , Lin Ma , and Lynden A. Archer, Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes, Adv. Energy Mater., 2015, 5, 1402073. https://doi.org/10.1002/aenm.201402073.
    [82]. Long Chen, Wenxin Li, Li-Zhen Fan, Ce-Wen Nan, and Qiang Zhang, Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries, Adv. Funct. Mater., 2019, 29, 1901047. https://doi.org/10.1002/adfm.201901047.
    [83]. Mukul D. Tikekar, Snehashis Choudhury, Zhengyuan Tu and Lynden A. Archer, Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries, Nat. Energy, 2016, 1, 16114. https://doi.org/10.1038/NENERGY.2016.114.
    [84]. Charles Monroe, and John Newman, The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces, J. Electrochem. Soc., 2005, 152 (2), A396-A404. https://doi.org/10.1149/1.1850854.
    [85]. R. Gonçalves, D. Miranda, A.M. Almeida, M.M. Silva, J.M. Meseguer-Dueñas, J.L. Gomez Ribelles, S. Lanceros-Méndez, C.M. Costa, Solid Polymer Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -cohexafluoropropylene) for Safer Rechargeable Lithium-Ion Batteries, SM&T, 2019, 21, e00104. https://doi.org/10.1016/j.susmat.2019.e00104.
    [86]. S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, A˚ . Wendsjo, Crystallinity and Morphology of PVdF–HFP-Based Gel Electrolytes, Polymer, 2001, 42, 1407–1416. https://doi.org/10.1016/S0032-3861(00)00517-6.
    [87]. Debbie J Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM), John Wiley & Sons,Ltd, 2008. https://doi.org/10.1002/9780470758731.
    [88]. Weilie Zhou, Robert P. Apkarian, Zhong Lin Wang, and David Joy, Scanning Microscopy for Nanotechnology: Techniques and Applications, Springer Science+Business Media, 2007, 1, 1-40. https://doi.org/10.1007/978-0-387-39620-0_1.
    [89]. Surender Kumar Sharma, Handbook of Materials Characterization, Springer International Publishing AG, 2018, 4, 113-124. https://doi.org/10.1007/978-3-319-92955-2.
    [90]. Augusto Marcelli, Antonio Cricenti, Wojciech M. Kwiatek, Cyril Petibois, Biological Applications of Synchrotron Radiation Infrared Spectromicroscopy, Biotechnol. Adv., 2012, 30, 1390–1404. https://doi.org/10.1016/j.biotechadv.2012.02.012.
    [91]. Hery Mitsutake, Ronei J. Poppi and Márcia C. Breitkreitz, Raman Imaging Spectroscopy: History, Fundamentals and Current Scenario of the Technique, J. Braz. Chem. Soc., 2019, 30, 11, 2243-2258. https://doi.org/10.21577/0103-5053.20190116.
    [92]. Joseph D. Menczel, R. Bruce Prime, Thermal Analysis of Polymers: Fundamentals and Applications, John Wiley & Sons, Inc., 2008, 3, 241-311. https://doi.org/10.1002/9780470423837.ch3.
    [93]. W. Stark, W. Bohmeyer, Non-Destructive Evaluation (NDE) of Polymer Matrix Composites, 2013, 7, 136-181. https://doi.org/10.1533/9780857093554.1.136.
    [94]. Safa Kasap, Peter Capper, Handbook of Electronic and Photonic Materials, Springer International Publishing AG, 2017. https://doi.org/10.1007/978-3-319-48933-9.
    [95]. Andrei A. Bunaciu, Elena gabriela Udriştioiu & Hassan Y. Aboul-Enein, Critical Reviews in Analytical Chemistry, Taylor and Francis Group, LLC, 2015, 45, 289-299. https://doi.org/10.1080/10408347.2014.949616.
    [96]. Ludwik Leibler, Theory of Microphase Separation in Block Copolymers, Macromolecules, 1980, 13, 1602-1617. https://doi.org/10.1021/ma60078a047.
    [97]. David J Lohse and Nikos Hadjichristidis, Microphase Separation in Block Copolymers, Curr. Opin. Colloid Interface Sci., 1997, 2, 2, 171-176. https://doi.org/10.1016/S1359-0294(97)80023-4.
    [98]. Jorge L. Olmedo-Martínez, Leire Meabe, Andere Basterretxea, David Mecerreyes and Alejandro J. Müller, Effect of Chemical Structure and Salt Concentration on the Crystallization and Ionic Conductivity of Aliphatic Polyethers, Polymers, 2019, 11(3), 452. https://doi.org/10.3390/polym11030452.
    [99]. Zhenrong Lu, Li Yang, Yaju Guo, Thermal Behavior and Decomposition Kinetics of Six Electrolyte Salts by Thermal Analysis, J. Power Sources, 2006, 156, 555–559. https://doi.org/10.1016/j.jpowsour.2005.05.085.
    [100]. Chang-Yu Hsu, Ren-Jun Liu, Chun-Han Hsu and Ping-Lin Kuo, High Thermal and Electrochemical Stability of PVDF-Graft-PAN Copolymer Hybrid PEO Membrane for Safety Reinforced Lithium-Ion Battery, RSC Adv., 2016, 6, 18082. https://doi.org/10.1039/c5ra26345j.
    [101]. M.A. Ratner and D. F. Shriver, Ion Transport in Solvent-Free Polymers, Chem. Rev., 1988, 8 8 , 109-124. https://doi.org/10.1021/cr00083a006.
    [102]. Shujahadeen B. Aziz, Thompson J. Woo, M.F.Z. Kadir, Hameed M. Ahmed, A Conceptual Review on Polymer Electrolytes and Ion Transport Models, Journal of Science: Advanced Materials and Devices, 2018, 3, 1-17. https://doi.org/10.1016/j.jsamd.2018.01.002.
    [103]. Jonas Mindemark, Matthew J. Lacey, Tim Bowden, Daniel Brandell, Beyond PEO-Alternative Host Materials for Li+-Conducting Solid-polymer Electrolytes, Prog. Polym. Sci., 2018, 81, 114–143. https://doi.org/10.1016/j.progpolymsci.2017.12.004.
    [104]. J. Gurusiddappa, W. Madhuri, R. Padma Suvarna, K. Priya Dasan, Studies on the Morphology and Conductivity of PEO/LiClO4, Mater. Today: Proceedings, 2016, 3, 1451–1459. https://doi.org/10.1016/j.matpr.2016.04.028.
    [105]. Jiayue Wang, Francielli S. Genier, Hansheng Li, Saeid Biria, and Ian D. Hosein, A Solid Polymer Electrolyte from Cross-Linked Polytetrahydrofuran for Calcium Ion Conduction, ACS Appl. Polym. Mater., 2019, 1, 1837−1844. https://doi.org/10.1021/acsapm.9b00371.
    [106]. S. Zugmann, M. Fleischmann, M. Amereller, R.M. Gschwind, H.D. Wiemhöfer, H.J. Gores, Measurement of Transference Numbers for Lithium Ion Electrolytes via Four Different Methods, A Comparative Study, Electrochim. Acta, 2011, 56, 3926–3933. https://doi.org/10.1016/j.electacta.2011.02.025.
    [107]. W Goreckit, M Jeannint, E Belorizkyt, C Roux and M Armand, Physical Properties of Solid Polymer Electrolyte (LiTFSI) Complexes, J. Phys. Condens. Matter, 1995, 7, 34. https://doi.org/10.1088/0953-8984/7/34/007.
    [108]. Dominica H. C. Wong, Jacob L. Thelen, Yanbao Fu, Didier Devaux, Ashish A. Pandya, Vincent S. Battaglia, Nitash P. Balsara, and Joseph M. DeSimone, Nonflammable Perfluoropolyether-Based Electrolytes for Lithium Batteries, PNAS, 2014, 111 (9), 3327-3331. https://doi.org/10.1073/pnas.1314615111.
    [109]. Kara D. Fong, Julian Self, Kyle M. Diederichsen, Brandon M. Wood, Bryan D. McCloskey, and Kristin A. Persson, Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries, ACS Cent. Sci., 2019, 5, 1250-1260. https://doi.org/10.1021/acscentsci.9b00406.
    [110]. Kevin L. Gering, Prediction of Electrolyte Conductivity: Results from a Generalized Molecular Model Based on Ion Solvation and a Chemical Physics Framework, Electrochim. Acta, 2017, 225, 175–189. https://doi.org/10.1016/j.electacta.2016.12.083.
    [111]. Takeshi Abe, Fumihiro Sagane, Masahiro Ohtsuka, Yasutoshi Iriyama, and Zempachi Ogumi, Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte: A Key to Enhancing the Rate Capability of Lithium-Ion Batteries, J. Electrochem. Soc., 2005, 152 11 A2151-A2154. https://doi.org/10.1149/1.2042907.
    [112]. E.R. Logan and J.R. Dahn, Electrolyte Design for Fast-Charging Li-Ion Batteries, Trends Chem., 2020, 2, 4. https://doi.org/10.1016/j.trechm.2020.01.011.
    [113]. Jae-Kwang Kim, Aleksandar Matic, Jou-Hyeon Ahn, Per Jacobsson, An Imidazolium Based Ionic Liquid Electrolyte for Lithium Batteries, J. Power Sources, 2010, 195, 7639–7643. https://doi.org/10.1016/j.jpowsour.2010.06.005.
    [114]. Liumin Suo, Zheng Fang, Yong-Sheng Hu, and Liquan Chen, FT-Raman Spectroscopy Study of Solvent-in-Salt Electrolytes, Chin. Phys. B, 2016, 25, 1, 016101. https://doi.org/10.1039/C3RA40732B.
    [115]. Jagath Pitawala, Jae-Kwang Kim, Per Jacobsson, Victor Koch, Fausto Croce and Aleksandar Matic, Phase Behaviour, Transport Properties, and Interactions in Li-Salt Doped Ionic Liquids, Faraday Discuss., 2012, 154, 71–80. https://doi.org/10.1039/c1fd00056j.
    [116]. Guang Yang, Chalathorn Chanthad, Hyukkeun Oh, Ismail Alperen Ayhan and Qing Wang, Organic–Inorganic Hybrid Electrolytes from Ionic Liquid-Functionalized Octasilsesquioxane for Lithium Metal Batteries, J. Mater. Chem. A, 2017, 5, 18012-18019. https://doi.org/10.1039/c7ta04599a.
    [117]. Carlos M. Costa, Maria M. Silva and S. Lanceros-Me´ndez, Battery Separators Based on Vinylidene Fluoride (VDF) Polymers and Copolymers for Lithium Ion Battery Applications, RSC Adv., 2013. https://doi.org/10.1039/c3ra40732b.
    [118]. Yunyun Zhong, Lei Zhong, Shuanjin Wang, Jiaxiang Qin, Dongmei Han, Shan Ren, Min Xiao, Luyi Sun and Yuezhong Meng, Ultrahigh Li-Ion Conductive Single-Ion Polymer Electrolyte Containing Fluorinated Polysulfonamide for Quasi-Solid-State Li-Ion Batteries, J. Mater. Chem. A, 2019, 7, 24251. https://doi.org/10.1039/c9ta08795h.
    [119]. Bill K. Wheatle, Jordan R. Keith, Santosh Mogurampelly, Nathaniel A. Lynd, and Venkat Ganesan, Influence of Dielectric Constant on Ionic Transport in Polyether-Based Electrolytes, ACS Macro Lett., 2017, 6, 1362-1367. https://doi.org/10.1021/acsmacrolett.7b00810.
    [120]. Yang Li, Wei Zhang, Qianqian Dou, Ka Wai Wong and Ka Ming Ng, Li7La3Zr2O12 Ceramic Nanofiber-Incorporated Composite Polymer Electrolytes for Lithium Metal Batteries, J. Mater. Chem. A, 2019, 7, 3391-3398. https://doi.org/10.1039/C8TA11449H.
    [121]. Gerrit Homann, Lukas Stolz, Jijeesh nair, isidora cekic Laskovic, Martin Winter & Johannes Kasnatscheew, Poly(ethylene oxide)-Based Electrolyte for Solid-State-Lithium Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure, Sci. Rep., 2020, 10, 4390. https://doi.org/10.1038/s41598-020-61373-9.
    [122]. Heng Zhang, Fangfang Chen, Oier Lakuntza, Uxue Oteo, Lixin Qiao, Maria Martinez-Ibañez, Haijin Zhu, Javier Carrasco, Maria Forsyth, and Michel Armand, Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Ether-Functionalized Anion, Angew. Chemie, 2019, 58, 35, 12070-12075. https://doi.org/10.1002/ange.201905794.
    [123]. Kang Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev., 2004, 104, 4303-4417. https://doi.org/10.1021/cr030203g.

    無法下載圖示 校內:2025-08-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE