簡易檢索 / 詳目顯示

研究生: 游惠雯
Yu, Hui-Wen
論文名稱: 探討新穎努南氏症的致病基因及其機制
The mechanism through which novel single nucleotide variants lead to Noonan syndrome
指導教授: 陳芃潔
Chen, Peng-Chieh
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 56
中文關鍵詞: 努南氏症NF1RASA2RIT1
外文關鍵詞: Noonan Syndrome, NF1, RASA2, RIT1
相關次數: 點閱:91下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    努南氏症 (Noonan Syndrome, NS) 是一種先天性體染色體突變的顯性遺傳疾病,可能是經由遺傳或是偶發突變造成,其發生率約為 1/1000 ~ 1/2500。努南氏症病患的基因突變,導致轉錄、轉譯出突變的RAS-ERK 訊息傳遞路徑中的蛋白,可能出現的臨床表徵有:發育遲緩、身材矮小、顏面特徵異常、蹼狀頸、先天性心臟方面的疾病以及認知與語言發展遲緩等等。過去的研究顯示,約有 70 ~ 80% 的努南氏症病患是由於帶有 PTPN11、SOS1、 RAF1、 KRAS、 BRAF、 SHOC2 、NRAS、RIT1 基因突變,使轉譯出來的蛋白質產物功能異常,導致 RAS-ERK 訊息傳遞路徑過度活化而致病。然而,仍約有 20% 的病患是由於其他未知的基因突變而致病。於是我們利用外顯子定序法找出24位病患基因的外顯子上帶有的基因突變,排除上述的已知致病基因和 SNP database 中的已知 SNPs後,平均每位病患帶有121個新的基因突變。我們主要將焦點放在 RAS-ERK 訊息傳路徑中的基因,並且在 NF1、RASA和 RIT1 基因上找到了新的突變點。正常的 NF1 和 RASA2 基因的蛋白質產物會刺激 RAS 蛋白內生性的 GTPase 活性,使 GTP 水解成 GDP 進而讓 RAS 蛋白失去活性,我們認為突變的 NF1 和 RASA2 蛋白質沒辦法有效的抑制RAS 蛋白的活性。RIT1 RAS 蛋白具有相似的蛋白質結構,突變的 RIT1 會使 RAF1 持續活化,導致 RAS-ERK 訊息傳遞路徑持續活化。為了確定突變的 NF1、RASA2、RIT1 蛋白質對 RAS-ERK 訊息傳遞路徑的影響,我們分別將基因轉染至 HEK-293T 細胞株中使其表現正常及突變的蛋白,並證實突變的基因蛋白質產物會導致 RAS-ERK 訊息傳遞路徑過度活化。前人研究顯示,帶有不同突變蛋白的 NS 病患可能會有些不同的症狀。因此,找出新的致病基因不僅有助於臨床上的診斷,也利於追蹤病患的疾病進程和可能出現的症狀。

    Abstract
    Noonan Syndrome (NS), one of the most common developmental diseases, is an autosomal genetic disorder that may occur sporadically or be inherited. NS is caused by germline mutations in genes encoding RAS-ERK signaling pathway. NS, affected about 1 in 1000~2500 newborns, is characterized by developmental delay, short stature, typical facies, webbed neck, distinctive craniofacial dysmorphism, congenital heart diseases, variable cognitive deficits and neurocognitive delay. NS-causing mutations, which may cause hyperactive RAS-ERK signaling pathway, were identified in PTPN11, SOS1, RAF1, KRAS, CBL, SHOC2, NRAS and RIT1 genes in ~80% NS patients. However, the genetic causes in the remaining ~20% of NS patients are still unknown. Hence, whole exome sequencing was performed with genomic DNA from 24 NS patients who carry no mutations in the known NS genes. On average, 121 novel missense mutations were found per patient. Genes involved in RAS-ERK signaling pathway were surveyed and novel mutations in NF1, RASA, and RIT1genes were identified. NF1 and RASA2 genes encode RAS GTPase activating proteins (RASGAP) that negatively regulate RAS activity. RIT1 encodes small GTPase protein, which is a RAS subfamily protein. To validate the effects of mutant proteins, wild type (WT) and mutant NF1, RASA2, or RIT1 genes were expressed in HEK-293 cell lines and in Flp-In TREx 293 cell lines. Loss-of-function mutations of NF1 and RASA2 failed to suppress the RAS activity and gain-of-function mutation in RIT1 lead to ERK hyper-activation. These data suggest that NF1, RASA2, and RIT1 are candidates of NS-causing genes.

    Content 摘要 I Abstract II 致謝 III Content 1 Abbreviates 3 Introduction 4 Noonan Syndrome 5 RAS-ERK signal transduction pathway 7 Whole exome sequencing 7 Protein functional interaction network 8 NF1 9 RASA2 10 RIT1 10 Significance and specific aims 12 Material and Methods 14 Patient samples 15 Identification of candidate genes for NS 15 Cloning of NS variants 15 Generating stable cell lines 16 Cell culture, transfection and immunoblotting 17 Immunoblotting 17 RAS activity assay 18 Real-time PCR 18 Protein half-life assay 18 Chloroquine treatment 19 Result 20 FI network 21 RIT1 gain-of-function mutations. 21 NF1 loss-of-function mutations. 22 RASA2 loss-of-function mutation. 23 Discussions 25 Tables 30 Table1. Summary of NS patients 31 Figures 32 Figure 1. 33 Figure 2. 39 Figure 3. 41 Figure 4. 45 References 50

    Anastasaki, C., et al. (2012). "Continual low-level MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish." Dis Model Mech 5(4): 546-552.

    Aoki, Y., et al. (2013). "Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome." Am J Hum Genet 93(1): 173-180.

    Araki, T., et al. (2004). "Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation." Nat Med 10(8): 849-857.

    Baralle, D., et al. (2003). "Different mutations in the NF1 gene are associated with Neurofibromatosis-Noonan syndrome (NFNS)." Am J Med Genet A 119A(1): 1-8.

    Barrett, S. D., et al. (2008). "The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901." Bioorg Med Chem Lett 18(24): 6501-6504.

    Biesecker, L. G. (2010). "Exome sequencing makes medical genomics a reality." Nat Genet 42(1): 13-14.

    Butler, M. G., et al. (2000). "Metacarpophalangeal pattern profile analysis in Noonan syndrome." Am J Med Genet 92(2): 128-131.

    Chen, P. C., et al. (2010). "Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome-associated Sos1 mutation." J Clin Invest 120(12): 4353-4365.

    Choi, M., et al. (2009). "Genetic diagnosis by whole exome capture and massively parallel DNA sequencing." Proc Natl Acad Sci U S A 106(45): 19096-19101.

    Cirstea, I. C., et al. (2010). "A restricted spectrum of NRAS mutations causes Noonan syndrome." Nat Genet 42(1): 27-29.

    Cordeddu, V., et al. (2009). "Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair." Nat Genet 41(9): 1022-1026.

    Croft, D., et al. (2011). "Reactome: a database of reactions, pathways and biological processes." Nucleic Acids Res 39(Database issue): D691-697.

    De Luca, A., et al. (2005). "NF1 gene mutations represent the major molecular event underlying neurofibromatosis-Noonan syndrome." Am J Hum Genet 77(6): 1092-1101.

    Hattori, S. and H. Baba (1996). "[Heterogeneity of GTPase-activating proteins for Ras in the regulation of Ras signal transduction pathway]." Yakugaku Zasshi 116(1): 21-38.

    Jopling, C., et al. (2007). "Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects." PLoS Genet 3(12): e225.

    Joshi-Tope, G., et al. (2005). "Reactome: a knowledgebase of biological pathways." Nucleic Acids Res 33(Database issue): D428-432.

    Klose, A., et al. (1998). "Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1." Hum Mol Genet 7(8): 1261-1268.

    Kobayashi, M., et al. (1996). "Human rasGTPase-activating protein (human counterpart of GAP1m): sequence of the cDNA, primary structure of the protein, production and chromosomal localization." Gene 175(1-2): 173-177.

    MacFarlane, C. E., et al. (2001). "Growth hormone therapy and growth in children with Noonan's syndrome: results of 3 years' follow-up." J Clin Endocrinol Metab 86(5): 1953-1956.

    Martinelli, S., et al. (2010). "Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype." Am J Hum Genet 87(2): 250-257.

    Mohi, M. G., et al. (2005). "Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations." Cancer Cell 7(2): 179-191.

    Ng, S. B., et al. (2010). "Exome sequencing identifies the cause of a mendelian disorder." Nat Genet 42(1): 30-35.

    Ng, S. B., et al. (2009). "Targeted capture and massively parallel sequencing of 12 human exomes." NATURE 461(7261): 272-276.

    Pandit, B., et al. (2007). "Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy." Nat Genet 39(8): 1007-1012.

    Rabbani, B., et al. (2014). "The promise of whole-exome sequencing in medical genetics." J Hum Genet 59(1): 5-15.

    Rauen, K. A. (2013). "The RASopathies." Annu Rev Genomics Hum Genet 14: 355-369.

    Razzaque, M. A., et al. (2007). "Germline gain-of-function mutations in RAF1 cause Noonan syndrome." Nat Genet 39(8): 1013-1017.

    Roberts, A. E., et al. (2013). "Noonan syndrome." Lancet 381(9863): 333-342.

    Roberts, A. E., et al. (2007). "Germline gain-of-function mutations in SOS1 cause Noonan syndrome." Nat Genet 39(1): 70-74.

    Sakabe, K., et al. (2002). "Potent transforming activity of the small GTP-binding protein Rit in NIH 3T3 cells: evidence for a role of a p38gamma-dependent signaling pathway." FEBS Lett 511(1-3): 15-20.

    Scheffzek, K., et al. (1998). "Structural analysis of the GAP-related domain from neurofibromin and its implications." EMBO J 17(15): 4313-4327.

    Scheffzek, K., et al. (1996). "Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras." NATURE 384(6609): 591-596.
    Schubbert, S., et al. (2006). "Germline KRAS mutations cause Noonan syndrome." Nat Genet 38(3): 331-336.

    Shi, G. X., et al. (2012). "Rit-mediated stress resistance involves a p38-mitogen- and stress-activated protein kinase 1 (MSK1)-dependent cAMP response element-binding protein (CREB) activation cascade." Journal of Biological Chemistry 287(47): 39859-39868.

    Tartaglia, M., et al. (2002). "PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity." Am J Hum Genet 70(6): 1555-1563.

    Tartaglia, M., et al. (2001). "Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome." Nat Genet 29(4): 465-468.

    Thiel, C., et al. (2009). "Independent NF1 and PTPN11 mutations in a family with neurofibromatosis-Noonan syndrome." Am J Med Genet A 149A(6): 1263-1267.

    Tuveson, D. A., et al. (2004). "Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects." Cancer Cell 5(4): 375-387.

    van der Burgt, I. (2007). "Noonan syndrome." Orphanet J Rare Dis 2: 4.

    Wu, G., et al. (2010). "A human functional protein interaction network and its application to cancer data analysis." Genome Biol 11(5): R53.

    Wu, X., et al. (2011). "MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1(L613V) mutation." J Clin Invest 121(3): 1009-1025.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE