簡易檢索 / 詳目顯示

研究生: 孫伯元
Sun, Bo-Yuan
論文名稱: 以五環素/烷基駢苯衍生物為主動層之互補式金屬氧化半導體元件
Organic complementary metal oxide semiconductor using Pentacene/PTCDI CxH2x+1 as active materials
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 100
中文關鍵詞: 有機互補式電晶體聚亞醯胺烷基駢苯衍生物五環素
外文關鍵詞: organic thin-film transistors, Polyimide, Pentacene, Perylene derivatives, Organic complementary-metal-oxide-semiconductor
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用五環素與本實驗室自行合成之不同烷基駢苯衍生物做為主動層,製作Pentacene/PTCDI CxH2x+1(X= 2-13)十二種有機互補式金屬氧化半導體(Organic complementary metal-oxide-semiconductor (O-CMOS))並比較碳數與電性之關係,並且探討有無聚亞醯胺(Polyimide,(PI, Nissan RN-1349))為修飾層對有機互補式金屬氧化半導體的電性差別。本實驗所製作的有機互補式金屬氧化半導體在沒有聚亞醯胺當修飾層時,五環素與烷基駢苯衍生物表面能與氧化矽差距過大,而無法形成好的晶格因此電晶體特性較差,但在主動層與絕緣層之間如有聚亞醯胺修飾時可以製作出提升載子漂移率與電流開關比、降低起始電壓的薄膜電晶體,使其n-type與p-type電晶體電特性能相互匹配,並且運用在有機互補式金屬氧化半導體的特性顯著改善,大幅降低消耗功率、增加雜訊邊限能力,並發現烷基駢苯衍生物碳數至七個碳數以前無法得到較好的結晶,因此無法與五環素薄膜電晶體電流匹配,而碳數增加到7以後可從原子力顯微鏡與接觸角等材料分析下可得到較好的晶格大小與表面能的匹配下,因此電流提升到可以跟五環素匹配,而可得較高的邊界雜訊與增益值。由材料分析得知,在有聚亞醯胺為修飾層時,光激發螢光與UV反射光譜皆較無聚亞醯胺往紅位移方向移動,得知半導體薄膜成長於聚亞醯胺上時明顯優於成長於二氧化矽上,在原子力顯微鏡下有修飾層時的烷基駢苯衍生物隨著碳數增加表面顆粒越大,導致表面的邊界減少,許多材料分析皆證明著本實驗的有機互補金屬氧化半導體在有修飾層且碳數大於七後烷基駢苯衍生物與五環素結合時的特性較好。

    The Organic complementary metal-oxide-semiconductor was used Pentacene and N,N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-CnH2n+1, n = 2~13) as active layer. The perylene derivatives were synthesized in our laboratory. The Polyimide (PI, Nissan RN-1349) as modification layer spun coat on SiO2.The surface energy of the active layer deposition on PI are smaller than that on SiO2, result in the crystal size of thin film more larger and made better transistor characteristic. The p- and n-type transistors of O-CMOS with PI layer as modification layer could reduce leakage current, have similar current, small power dissipation and high noise margin. And, the better subthreshold swing and larger current result in high gain and great out current of O-CMOS. We analyzed the properties of these thin films with PI by the Photoluminescence and absorption spectrum to prove that the band gap and energy gap smaller than which without PI. Further, we observed the tighter interface between PI to active layer than SiO2 to active layer by Scanning Electron Microscope. Then, all of these analysis are point out the PI layer can promote the OTFTs characteristic. Finally, we demonstrated the outstanding O-CMOS characteristic must to using PTCDI-CnH2n+1 carbon of number 7 to 13 integrate with pentacene.

    中文摘要…………………………………………………………………I ABSTRACT……………………………………………………………III 目次……………………………………………………………………..IV 表目錄…………………………………………………………………VII 圖目錄………………………………………………………….…….VIII 致謝……………………………………………………………………..XI 第一章 緒論…………………………………………………………..…1 1-1 研究動機…………………………………………………………….1 1-2 O-TFT and O-CMOS演進………………………………………… 2 1-3 章節架構…………………………………………………………….6 第二章 薄膜特質簡介和光電特性量測原理…………………………10 2-1 烷基駢苯衍生物簡介……………………………………………...10 2-2 五環素簡介………………………………………………………...10 2-3 實驗儀器……………………………………………………….......11 2-3.1 光激發螢光 (Photoluminescence, PL)………………….....11 2-3.2 X-Ray繞射量測系統 (X-Ray Diffraction, XRD).………....12 2-3.3 原子力顯微鏡 (Atomic Force Microscope, AFM)….……..13 2-3.4 UV吸收光譜…………………………………………….......14 2-3.5 表面能 (Surface Energy)...……………………………........14 2-3.6 掃描電子顯微鏡 (Scanning Electron Microscope, SEM)…15 2-3.7 氧氣電漿 (O2 plasma)...…………………….………….......16 2-3.8 物理汽相沉積蒸鍍系統 (Physical Vapor Deposition, PVD)………………………………………………………...17 第三章 OTFT and O-CMOS簡介與實驗流程………………….……24 3-1電晶體基本架構與操作……………………………………...…….24 3-1.1 五環素有機薄膜電晶體 (Pentacene OTFT)..……………..24 3-1.2 烷基駢苯衍生物有機薄膜電晶體 (PTCDI OTFT) ….…..25 3-2萃取電晶體元件參數方法…………………………………...…….26 3-2.1 臨界電壓定義 (Threshold Voltage, Vt)…………......….….26 3-2.2 次臨界擺幅定義 (Subthreshold Swing, S.S).……….…….27 3-2.3 開關電流比定義 (On/Off ratio)……………….……..…….27 3-2.4 載子移動率定義…………………………………......….….28 3-3 O-CMOS基本架構與操作………………………………...….……29 3-3.1轉換曲線與雜訊邊限(Transfer voltage and Noise margin)……………………………………………………...29 3-3.2靜態散逸功率與動態操作(Power dissipation and Dynamic operation)…………………………………………………....33 3-4 元件製作流程……………………………………………….……..34 3-4.1 基板清洗步驟……………………………………….….…..34 3-4.2 物理汽相沉積蒸鍍系統及製程……………………………35 第四章 結果與討論…………………………………………….….…..43 4-1 材料分析………………………………………………..….….…...43 4-1.1 表面能…………………………………………...….….…...43 4-1.2 原子力顯微鏡………………………………….….…...…...44 4-1.3 掃描電子顯微鏡……………………………….….…....…..46 4-1.4 反射式UV吸收光譜…………………..………….…...…..47 4-1.5 光激發螢光…………………………...………………...…..48 4-1.6 X-Ray繞射量測系統……………………………………….49 4-2 O-TFTs的結果與討論.…………………….…..……………....…..50 4-3 O-CMOS的討論…….…………………….…..…..…………....…..53 第五章 結論與未來工作.…………………….…..…..…………....…..95 實驗結論.…………………….…..…………………....…………....…..95 未來工作.…………………….…..…………………....…………....…..96 參考文獻.…………………….…..…………………....…………....…..97

    [1].A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 63, 2002 (1993)
    [2].F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastaca, Science 265, 1684 (1994)
    [3].Y. Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Trans. Electron Devices 44, 1325 (1997)
    [4].Y. Y. Lin, A. Dodabalapur , R. Sarpeshkar , Z. Bao, W. Li, K. Baldwin, V. R. Raju, H. E. Katz, Appl. Phys. Lett. 74, 2714 (1999)
    [5].M. Halik, H. Klauk, Appl. Phys. Lett. 81, 1911 (2002)
    [6].S. D. Vusser, S. Steudel, K. Myny, J. Genoe, P. Heremans, Appl. Phys. Lett. 88, 162116 (2006)
    [7].H. N. Jong, M. Kitamura, Y. Arakawa, Appl. Phys. Express 1, 021803 (2008)
    [8].C. R. Kagan, P. Andry, Thin-Film Transistors, p.346 (2003).
    [9].G. H. Heilmeier, L. A. Zanoni, J. Phys. Chem. Solids 25, 603 (1964)
    [10].K. Kudo, M. Yamashine, T. Moriizumi, Jpn. J. Appl. Phys. 23, 130 (1984)
    [11].C. Clarisse, M. T. Riou, M. Gaunean, M. Le Contellec, Electron. Lett. 24, 674 (1988)
    [12].G. Horowitz, X. Peng, D. Fichou, Solid State Common 72, 381 (1989)
    [13].G. Horowitz, X. Peng, D.Fixhou, F. Garnier, Synth. Met. 51, 419 (1992)
    [14].F. Garnier, A. Yasssr, R. Hajlaoui, G. Horowitz, J. Am. Chem. Soc. 115, 8716 (1993)
    [15].F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastaca, Science 265, 1684 (1994)
    [16].A. Dodabalapur, L. Torsi, H. E. Katz, Science 268, 270 (1995)
    [17].C. D. Dimitrakopoulos, A. R. Brown, J. Appl. Phys. 80, 2501 (1996)
    [18].Z. Bao, A. J. Gundlach, A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996)
    [19].J. G. Laquindanum, H. E. Katz, A. J. Lovinger, A. Dodabalapur, Adv. Mater. 9, 36 (1997)
    [20].H. Sirringhause, R. H. Friend, X.C. Li, S. C. Moratti, A. B. Holmes, N. Feeder, Appl. Phys. Lett. 71, 3871 (1997)
    [21].H. E. Katz, A. J. Lovinger, J. G. Laquindanum, Chem. Mater. 10, 457 (1998)
    [22].J. G. Laquindanum. H. E. Katz, A. J. Lovinger, J. Am. Chem. Soc. 120, 664 (1998)
    [23].G. Guillaud, M. Al Sadound, M. Maitrot, Chem. Phys. Lett. 167, 503 (1990)
    [24].H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de leeuw, Nature 401, 658 (1999)
    [25].S. Lee, B. Koo, J. Shin, E. Lee, H. Park, H. Kim, Appl. Phys. Lett. 88, 162109 (2006)
    [26].B. H. Hamadani, D. J. Gundlach, I. McCulloch, M. Heeney, Appl. Phys. Lett. 91, 243512 (2007)
    [27].H. Wang, D. Song, J. Yang, B. Yu, Y. Geng, D. Yan, Appl. Phys. Lett. 90, 253510 (2007).
    [28].S. Liu, S. C. B. Mannsfeld, M. C. LeMieux, H. W. Lee, Z. Bao, Appl. Phys. Lett. 92, 253306 (2008)
    [29].M. Leufgen, O. Rost, C. Gould, G. Scmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mastorrent, Org. Electron 9, 1101 (2008)
    [30].J. Kastner, J. Paloheimo, H. Kuzmany, Science, 113, 512 (1993)
    [31].A. R. Brown, D. M. de leeuw, E. J. Lous, E. E. Havingga, Synth. Met. 66, 257 (1994)
    [32].R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 67, 121 (1995)
    [33].G. Horowitz, F. KouKi, P. Spearman, D. Fichou, C. Nogues, X. Pan, F. Garnier, Adv. Mater 8, 242 (1996)
    [34].J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 118, 11331 (1996)
    [35].J. R. Ostrick, A. Dondabalapur, L. Torsi, A. J. Lovinger, E. W. Lwol, T. M. Miller, J. Appl. Phys. 81, 6804 (1997)
    [36].Z. Bao, A. J. Lovunger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998)
    [37].H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature 404, 478 (2000)
    [38].H. E. Katz, J.Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 122, 7787 (2000)
    [39].A Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed. 39, 4547 (2000)
    [40].S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Adv. Mater. 4, 371 (2003)
    [41].R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da S. Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, J. Phys. Chem. B 108, 19281 (2004)
    [42].S. Tatermichi, M. Ichikawa, T. Koyama, Y. Taniguchi, Appl. Phys. Lett. 89, 112108 (2006)
    [43].H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Nature 445, 745 (2007)
    [44].林益生,以烷基駢苯衍生物作為主動層之有機薄膜電晶體,國立成功大學碩士論文 (2008)
    [45].黃佑沂,不同退火溫度之有機駢苯衍生物薄膜電晶體特性研究, 國立成功大學碩士論文 (2007)
    [46].買昱椉,五環素薄膜初期成長機制研究,國立成功大學博士論文 (2007)
    [47].W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, Appl. Phys. Lett. 89, 112126 (2006)
    [48].P. Schouwink. G. Gadret. R. F. Mahrt, Chem. Phys. Lett. 341, 213 (2001)
    [49].Shengang Xu, Mujie Yang, Shaokui Cao, React. Polym. 66, 471 (2006)
    [50].H. Na Jong, M. Kitamura, Y. Arakawa, Thin Solid Films 517, 2079 (2009)
    [51].H. Na Jong , M. Kitamura, Y. Arakawa, Appl. Phys. Lett. 93, 213505 (2008)
    [52].X. H. Zhang, W. J. Potscavage, J. S. Choi, B. Kippelen, Appl. Phys. Lett. 94, 403312 (2009)
    [53].H. Na Jong, M. Kitamura, Y. Arakawa, Appl. Phys. Express 1, 021803 (2008)

    下載圖示 校內:2014-07-03公開
    校外:2014-07-03公開
    QR CODE