| 研究生: |
盧勝利 Lu, Sheng-Li |
|---|---|
| 論文名稱: |
以射頻分子束磊晶成長氮化鎵薄膜與氮化鋁/氮化鎵超晶格之特性分析 Characterization of GaN films and AlN/GaN superlattice grown by radio-frequency molecular beam epitaxy |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 氮化鎵 、分子束磊晶 、鋁化鎵/氮化鎵超晶格 |
| 外文關鍵詞: | AlN/GaN superlattice, MBE, GaN |
| 相關次數: | 點閱:75 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此論文中我們利用裝備有RF 電漿輔助氮氣源的Riber compact 21s分子束磊晶系統成長氮化鎵薄膜,由於缺乏氮化鎵塊體基板,因此基板的選擇對於磊晶品質具有相當重大的影響。一般常用矽基板、藍寶石基板和template基板來成長氮化鎵薄膜,我們發現了在未成長低溫緩衝層的藍寶石基板上成長氮化鎵,可以得到0.753nm的表面均方根值和5.4 arcmin XRD的半高寬,其薄膜特性結果顯示比成長在template或Si基板上佳。此外,在研究氮化鎵磊晶層之氮/鎵比時發現,偏於Ga-rich 的樣品其表面較為平整且光致螢光光譜的半高寬較小;在比例接近相等時會有最窄的對稱x-ray 繞射曲線。
最後我們也在藍寶石基板和template上成長20周期的鋁化鎵/氮化鎵的超晶格結構,發現用低鋁含量的氮化鋁鎵/氮化鎵的緩衝層結構時,可以得到較好的超晶格表面,甚至比成長在氮化鎵基板時有較平整的表面。
Riber compact 21s molecular beam epitaxy system equipped with a radio frequency plasma assisted nitrogen source has been used to grow GaN films. Due to the lack of suitable GaN bulk substrate, the choice of the substrate has quite great influence on the GaN epilayer. Si, sapphire and template are used as the substrates for the growth of GaN eiplayers. It is found that with suitable Ga/N ratio, high quality GaN layers can be directly grown on the sapphire without using the low temperature buffer layers by RF-MBE. The 0.753 nm rms surface roughness and 5.4 arcmin full-width at the half-maximum (FWHM) of XRD can be directly grown on sapphire which are better than those grown on template or Si.
In the N/Ga flux ratio of GaN epitaxy layer experiment, we have found these interesting results. First, the smoothest surface roughness rms of atomic force microscopy (AFM) and the narrowest peak width of PL spectrum appear in a slight Ga-rich condition. Second, the smallest of XRD FWHM appear in the nearly stoichiometry condition.
Finally, we report the results about 20 periods superlattices of [(AlN)1/(GaN)9]/(AlN)5 on GaN template and sapphire substrate grown by RF-MBE. We find low Al content (x=0.25) GaN/AlxGa1-xN/GaN buffer layer grown on sapphire substrates are better than GaN template.
[1] O. H. Hughes, D. Korakakis, T. S. Cheng, A. V. Blant, N. J. Jeffs, and C. T. Foxon, J. Vacuum Science Technology B 16, 2237 (1998)
[2] A. Y. Cho, Journal of Crystal Growth 202, 1 (1999).
[3] S.J. Chang, W.C. Lai, Y.K. Su, J.F. Chen, C.H. Liu, U.H. Liaw, IEEE J.Sel. Topic Quantum Electronics 8 (2002) 278.
[4] K. Amimer , A. Georgakilas , M. Androulidaki, K. Tsagaraki , M. Pavelescu ,S. Mikroulis , G. Constantinidis , J. Arbiol , F. Peiro , Science 255 (1993) 513
[5] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264 (1994) 553.
[6] J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D.L. Sivco, N.J. Baillargeon, A.Y. Cho, Applied Physics Letter 70 (1997) 2670.
[7] A. Tredicucci, F. Capasso, C. Gmachl, D.L. Sivco, A.L. Hutchinson, A.Y. Cho, Applied Physics Letter 73 (1998) 2101.
[8] M. Beck, D. Hofstetter, T. Aellem, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295 (2002) 301.
[9] R. K. ohler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Lindfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi, Nature 417 (2002) 156.
[10] S. Anders, W. Schrenk, E. Gornik, G. Strasser, Applied Physics Letter 80 (2002) 1864.
[11] J.S. Roberts, R.P. Green, L.R. Wilson, E.A. Zibik, D.G. Revin, J.W. Cockburn, R.J. Airey, Applied Physics Letter 82 (2003) 4221.
[12] C. Gmachl, H.M. Ng, S.-N.G. Chu, A.Y. Cho, Applied Physics Letter 77 (2000) 3722.
[13] H.P. Maraska, D.A. Stevenson and J.I. Pankove, Applied Physics Letter 22, 303 (1973)
[14] S. Yoshida and S. Gonda, Applied Physics Letter 42, 427 (1983).
[15] H. Lee, M. Yuri, T. Ueda, J. S. Harris, and K. Sin, Journal of Electronics Manufacturing 26, 898 (1997).
[16] H. Tsuchiya, F. Hasegawa, H. Okumura, and S. Yoshida, Japanese Journal of Applied Physics 33, 6448 (1994).
[17] P. Ven., B. Beau., M. Vai., and P. Giba., Journal of Crystal Growth 173, 249 (1997).
[18] B. Pecz, M. A. di Forte-Poisson, L. Toth, G. Radnoczi, G. Huhn, V. Papaioannou, and J. Stoemenos, Materials Science and Engineering B, (B50) 93, (1997).
[19] C. Y. Hwang, M. J. Schurman, W. E. Mayo, Y. C. Lu, R. A. Stall, and T. Salagaj, Journal of Electronics Manufacturing 26, 243 (1997).
[20] R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Alley, K. Linthicum, L. B. Rowland, S. Tanaka, and R. S. Kern, Journal of Crystal Growth 178, 87 (1997).
[21] X. B. Li, D. Z. Sun, M. Y. Kong, and S. F. Yoon, Journal of Crystal Growth 183, 31 (1998).
[22] P. Ruterana, P. Vermaut, V. Potin, G. Nouet, A. Botchkarev, A. Salvador, and H. Morkoc, Material Science and Engineering B 50, 72 (1997).
[23] A. Sakai, A. Kimura, H. Sunakawa, and A. Usui, Journal of Crystal Growth 183, 49 (1998).
[24] A. A. Yamaguchi, T. Manako, A. Sakai, H. Sunakawa, A. Kimura, M. Nido, and A. Usui, Journal of Applied Physics 35, L873 (1996).
[25] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, Journal of Crystal Growth 128, 391 (1993).
[26] S. N. Basu, T. Lei and T. D. Moustakas, Journal of Materials Sciences Res. 9, 2370 (1994).
[27] V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, Journal of Applied Physics. 82, 5097 (1997).
[28] S. Kubo, S. Kurai, and T. Taguchi, Vacuum 59, 277 (2000)
[29] V. N. Jmerik, V. V. Mamutin, V. A. Vekshin, T. V. Shubina, S. V. Ivanov, and P. S. Kop'ev, Material Science and Engineering B 59, 60 (2000)
[30] Cook, Jr., J. F. Schetzina, J. Ren, and J. A. Edmond, Journal of vacuum Science Technology B 13, 1571 (1995)
[31] N. Grandjean, J. Massies, and M. Leroux, Applied Physics Letter 69, 2071 (1996)
[32] F. Widmann, G. Feuillet, B. Daudin, and J. L. Rouviere, Journal of Applied Physics 85, 1550 (1999)
[33] N. Grandjean and J. Massies, Material Science and Engineering B 59, 39 (1999)
[34] M. H. Kim, C. Sone, J. H. Yi, and E. Yoon, Applied Physics Letter 71, 1228 (1997)
[35] J.-S. Paek, K.-K Kim, J.-M. Lee, D.-J. Kim, M.-S. Yi, D. Y. Noh, H.-G. Kim, and S.-J. Park, Journal of Crystal Growth 200, 55 (1999)
[36] F. A. Ponce, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, Applied Physics Letter 69, 337 (1996)
[37] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, Applied Physics Letter 71, 2635 (1997)
[38] B. Daudin, J. L. Rouviere, and M. Arlery, Applied Physics Letter 69, 2480 (1996)
[39] E. S. Hellman, MRS Internet J. Nitride Semicond. Res. 3, 11 (1998)
[40] A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Showronski, J. Neugebauer, and J. E. Northrup, Applied Physics Letter 72, 2114 (1998)
[41] E. C. Piquette, P. M. Bridger, Z. Z. Bandic, and T. C. McGill, Journal of vacuum Science Technology B 17, 1241 (1999)
[42] P. Hacke, G. Feuillet, H. Okumura, S. Yoshida, Applied Physics Letter 69 (1996) 2507
[43] D L. Liu, J.H. Edgar, Material Science and Engineering. R 38 ,61 (2002) .
[44] L. Liu, J. H. Edgar, Materials Science and Engineering R 37, 61-127, (2002).
[45] E.J. Tarsa, B, Heying, X.H. Wu, P. Fini, S.P. Denbarrs, J.S. Speck, Journal of Applied Physics 82 (1997) 5472.
[46] Y. Inoue, H. Nagasawa, N. Sone, K. Ishino, A. Ishida, H. Fujiyasu, J.J. Kim, H. Makino, T. Yao, S. Sakakibara, M. Kuwabara, Journal of Crystal Growth 265 (2004) 65–70