簡易檢索 / 詳目顯示

研究生: 張皓昀
Chang, Hao-Yun
論文名稱: 基板衝擊對超微粒金屬粉末噴霧製程之效應
Production of Ultra-fine Metallic Powder by Atomization with Impingement on Substrates
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 152
中文關鍵詞: 金屬粉末霧化衝擊基板
外文關鍵詞: impingement, atomization, substrates, metallic powder
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究主要以實驗方法探討基板衝擊對超微細金屬粉末噴霧製程之效應,在金屬噴霧中加入碟形、環形、圓筒、多孔基板及其組合,藉以討論基板衝擊對金屬粉末噴霧製程之影響。實驗所採用之金屬成分為錫鉛合金﹙錫63%,鉛37%﹚,其熔點為183℃。實驗條件金屬溫度﹙Tm﹚為350℃,氣體壓力﹙Pg﹚2 bar。實驗所採用之金屬成分為錫鉛合金﹙錫63%,鉛37%﹚,其熔點為183℃。實驗條件金屬溫度﹙Tm﹚為350℃,氣體壓力﹙Pg﹚2 bar。在未配置基板時, 金屬粉末平均粒徑﹙SMD﹚為9.28μm,金屬粉末體積百分比﹙V0-15﹚為41.82%。實驗結果顯示,在噴嘴下方配置碟型基板可大幅降SMD且隨著碟型基板外徑D的增加而遞減。SMD可降低至5.25μm,V0-15也可提升至69.07%。且金屬噴霧之SMD隨著碟形基板對金屬噴霧遮蔽率之降低而增加。在遮蔽率同為100%下,由於碟形基板與噴嘴出口的距離不同,金屬噴霧會有不同程度之固化,故會影響金屬噴霧之平均粒徑。若於噴嘴下方配置多孔基板,則隨著多孔基板孔徑dp之減小,對噴霧之遮蔽面積漸增,SMD隨之遞減至6.25μm。若於噴嘴下方配置圓筒基板, SMD隨著圓筒基板邊緣高度Hp的增加而遞減至4.26μm,V0-15比例則遞增至59.65%。若於噴嘴下方配置碟型基板與環型基板之組合,在碟型基板外徑D與環形基板內徑Din相同時,則SMD會隨著碟型與環型基板距離△H減小而由10.86μm遞減至5.58μm, V0-15則遞增達53.21%。當D小於Din時, SMD會隨著碟型與環型基板的距離△H減小而遞增,由6.52μm遞增至8.98μm,V0-15則遞增至49.65%。若於噴嘴下方配置多孔基板與圓筒基板之組合,則SMD隨著多孔與圓筒兩基板距離△H減小而遞減,由2.88μm遞減至2.43μm,V0-15則從69.85%遞增至71.1%。另外,分析金屬粉末之粒徑分佈,發現在基板衝擊效應下,金屬粉末之分佈範圍更窄,故知基板衝擊效應能有效達成金屬粉末粒徑細微化與分佈窄化之目的。

    Abstract
    This research program investigates the production of Ultra-fine Metallic Powder by Atomization with Impingement on Substrates. Different geometry substrates are placed and are rearranged and combined in the metallic spray. To probe into the production of Ultra-fine Metallic Powder by Atomization with Impingement on Substrates. The metal used in this research was Sn63%Pb37% alloy with melting point 183℃. The metal was heated to 350℃ under the pressure ranging from 2 to 3.8 bar. The SMD and V0-15 of the molten spray was 9.28μm and 41.82%, respectively, without substrates. It was found that SMD decreased to 5.25μm and V0-15 increased to 69.07% as the diameter of the disc-type substrate was increased. It was due to the increase of the blockage ratio of the substrates in the spray flow. The particle size was also dependent on the distance between substrate and atomizer under the blockage ratio of 100% due to the different solidification processes of the molten spray in the downstream. The SMD decreased to 6.25μm when the disc-type type substrate was replaced by the porous substrate. It was due to the decrease of the blockage ratio under porous substrate condition. Furthermore, SMD decreased to 4.26μm and V0-15 increased to 59.65% as the disc-type type substrate was replaced by the cylindrical substrate. SMD was decreased as the height of the cylindrical ring was increased. The combination of the disk-type and ring-type substrates also resulted in decrease of the particle size. When the outer diameter of the disk-type substrate equaled to the inner diameter of the ring-type substrate, the SMD decreased from 10.86μm to 5.58μm and V0-15 increased to 53.21% as the distance between disk-type and ring-type substrate decreased. On the other hand, when the outer diameter of the disk-type substrate was smaller than the inner diameter of the ring-type substrate, the SMD increased from 6.52μm to 8.98μm and V0-15 increased to 49.65% as the distance between the disk-type and ring-type substrate was decreased. Finally, by combination of the porous and cylindrical substrates, SMD decreased from 2.88μm to 2.43μm and V0-15 increased from 69.85% to 71.1% as the distance between porous and cylindrical substrates was decreased. The particle size distribution of the metal powder was more concentrated under impingement of different substrates. It is concluded that the impinging mechanism of the molten spray on the substrates is an effective technique to control the particle size and size distribution in the metal powder production.

    目錄 摘要 ii Abstract iv 致謝 vi 目錄 vii 表目錄 xii 圖目錄 xiii 符號說明 xviii 第一章 緒論 1 1-1 簡介 1 1-2 液體碎化過程文獻回顧 6 1–3 霧化器設計相關文獻 8 1-3-1 外混式霧化器相關文獻 12 1-3-2 內混式霧化器相關研究 15 1-4 霧化氣體對液態噴流的熱力行為 17 1-5 液滴之碰撞行為 17 1-6 研究動機 23 第二章 實驗設備與儀器 26 2-1 實驗設備 26 2-2 實驗量測儀器 29 2-2-1 INSITEC粒徑分析儀 29 2-2-2 Thermocouple熱電耦 31 2-3 掃描式電子顯微鏡 31 2-4 自動化系統 32 第三章 實驗步驟及方法 34 3-1 液態金屬之溫度控制 34 3-2 微粉末之防護 35 3-3 液態金屬之霧化 36 3-4 金屬噴霧在基板作用下之霧化 37 3-5 金屬顆粒之量測 37 3-6 液態金屬流量的量測 37 3-7 INSITEC粒徑分析儀的量測 38 3-8 量測條件 39 3-9 實驗誤差 39 3-9-1 金屬粉末製備過程所形成之誤差 39 3-9-2 INSITEC粒徑分析儀之儀器誤差 40 3-9-3 Thermocouple熱電耦量測溫度之誤差 41 3-10 常用名詞 41 第四章 結果與討論 43 4-1 金屬噴霧於碟型基板衝擊效應下對噴霧製程之影響 43 4-1-1碟形基板對噴霧之面積遮蔽率對金屬噴霧製程之影響 44 4-1-2 碟形基板外徑變化對金屬噴霧平均粒徑之影響 45 4-1-3 碟形基板外徑變化對金屬噴霧累積體積百分比之影響 47 4-1-4 碟形基板外徑變化對金屬噴霧粒徑體積百分比V0-15之影響 48 4-1-5 碟形基板外徑變化對金屬噴霧粒徑體積百分比V15-25之影響 50 4-1-6 碟形基板外徑變化對金屬噴霧粒徑體積百分比V25-45之影響 51 4-1-7 碟形基板外徑變化對金屬粉末產生率之影響 52 4-1-8 碟形基板外徑變化對金屬噴覆成型產生率之影響 53 4-2 金屬噴霧於多孔基板衝擊效應下對噴霧製程之影響 54 4-2-1 多孔基板孔徑變化對金屬噴霧平均粒徑之影響 54 4-2-2 多孔基板孔徑變化對金屬噴霧累積體積百分比之影響 56 4-2-3 多孔基板孔徑變化對金屬噴霧粒徑體積百分比V0-15之影響 57 4-2-4 多孔基板孔徑變化對金屬噴霧體積百分比V15-25之影響 59 4-2-5 多孔基板孔徑變化對金屬噴霧體積百分比V25-45之影響 60 4-3 金屬噴霧於圓筒基板衝擊效應下對噴霧製程之影響 62 4-3-1 圓筒基板邊緣高度變化對金屬噴霧平均粒徑之影響 62 4-3-2 圓筒基板邊緣高度變化對金屬噴霧粒徑累積百分比之影響 63 4-3-3 圓筒基板邊緣高度變化對金屬噴霧粒徑體積百分比之影響 64 4-3-4 圓筒基板邊緣高度變化對金屬粉末產生率之影響 65 4-3-5 圓筒基板邊緣高度變化對金屬噴覆成型產生率之影響 65 4-4 金屬噴霧於碟型基板與環形基板衝擊效應下對噴霧製程之影響 66 4-4-1 碟型基板與環形基板兩者距離變化對金屬噴霧平均粒徑之影響 66 4-4-2 碟型基板與環形基板兩者距離變化對金屬噴霧粒徑累積百分比之影響 68 4-4-3 碟型基板與環形基板兩者距離變化對金屬噴霧粒徑體積百分比之影響 70 4-5 金屬噴霧於多孔基板與圓筒基板衝擊效應下對噴霧製程之影響 72 4-5-1 多孔基板與圓筒基板兩者距離變化對金屬噴霧平均粒徑之影響 72 4-5-2 多孔基板與圓筒基板兩者距離變化對金屬噴霧粒徑累積百分比之影響 74 4-5-3 多孔基板與圓筒基板兩者距離變化對金屬噴霧粒徑體積百分比之影響 75 4-5-4 多孔基板與圓筒基板兩者距離變化對金屬粉末產生率之影響 76 4-5-5 多孔基板與圓筒基板兩者距離變化對金屬噴覆成型產生率之影響 77 4-6 粒徑分布圖﹙Particle Size Ditribution,PSD﹚ 78 4-7 SEM照相圖 78 第五章 結論 80 參考文獻 83 自述 152

    參考文獻
    [1] Zhang Shuguang, “A Novel Ultrasonic Atomization Atomization Process for Producing Spherical Metal Powder,” Acta Metallurgica Sinica, Vol.38, No.8, pp.888-892, 2002。
    [2] 馮慶芬,“粉末冶金學”,新文京開發出版有限公司,第二章,民國91年5月。
    [3] 徐仁輝,“粉末冶金概論”,新文京開發出版有限公司,第三章,民國91年9月。
    [4] Lefebvre, A. H., “Atomization and Spray,” Hemisphere Publishing Corporation, New York, pp.1-25 , 1989.
    [5] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
    [6] Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
    [7] Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
    [8] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
    [9] Fraser, R. P., “Liquid Fuel Atomization, ” Sixth Symposium﹙International﹚on Combustion, Rein-hold, New York, pp.687-701, 1957.
    [10] Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No.7901/2-0, 1979.
    [11] Cubberly, and William, H. Metal Handbook. ninth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
    [12] Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, 1978, pp. 1-32.
    [13] Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol. 5,pp. 252-256.
    [14] German and Randall, M., Powder Metallurgy Science. Metal Powder Industries Federation, Princeton, N.J., 1994.
    [15] Nukiyama, S. and Tanasawa, Y., “Experiments on Atomization of Liquids in an Airstream,” Transaction of JSME, Vol. 5, No. 18, pp. 68-75, 1939.
    [16] Gretzinger, J. and Marshall, W.R. Jr., “Characteristics of Pneumatic Atomization,” AIChE Journal, Vol. 7, No. 2, pp. 312-318, Jun. 1961.
    [17] Kim, K.Y., and Marshall, W.R. Jr., “Drop-Size Distributions from Pneumatic Atomizers,” AIChE Journal, Vol. 17, No. 3, pp. 575-584, May 1971.
    [18] Tate, R.W., “Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers,” Proceeding of the 3rd ICLASS," pp. IIC/1/1-13, 1985.
    [19] Rizkalla, A. A. and Lefebvre A.H., “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp. 173-179, April 1975.
    [20] Rizkalla, A. A. and Lefebvre A.H., “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol. 97, pp. 316-320, 1975
    [21] Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp.1139-1142, 1983.
    [22] Beck, J., Lefebvre, A. H. and Koblish, T., “Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
    [23] Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
    [24] Beck, J. E. and Lefebvre A. H., “Air Blast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol. 7, NO.2, March-April, 1991.
    [25] Aligner, M. and Wittig, S., “Swirl and Counter Swirl Effects in Prefilming Air Blast Atomization,” Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
    [26] 許耀仁,“氣衝式平面噴嘴液膜霧化特性之研究”,國立成功大學航太所碩士論文,1993。
    [27] Sattelmayer, T. and Witting, S., ”Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp.465-472, 1986.
    [28] Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
    [29] Press, C., Gupta, A.K. and Semerjian, H.G., “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer, ” HTD-vol.104, pp.111-119, 1988.
    [30] Kevin, S. Chen and Lefebvre, A. H., “Spray Cone Angle of Effervescent Atomizers, ” Atomization and Sprays, vol. 4, pp.291-301, 1994.
    [31] 楊坤和,“研究型氣助式噴嘴之噴霧特性研究”,國立成功大學航太所碩士論文,1992。
    [32] 徐明生,“雙流體式平面噴嘴霧化特性之研究”,國立成功大學航太所碩士論文,1995。
    [33] 王承光,“氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究”,國立成功大學航太所碩士論文,1996。
    [34] Mates, S P and Settles, G S “High-speed imaging of liquid metal atomization by two different close-coupled nozzles,” Advances in Powder Metallurgy and Particulate Materials--1996. Vol. 1; Washington, DC; USA; 16-21 June 1996. pp. 1.67-1.80. 1996.
    [35] Iver E. Anderson, Robert L. Terpstra, “Progress toward gas atomization processing with increased uniformity and control,” Materials Science and Engineering Vol.326, Issue.1, pp.101-109, March 2002
    [36] 康煜昌,“平面型液態金屬霧化器之霧化特性研究”,國立成功大學航太所碩士論文,1998。
    [37] 楊舒然,“強制式液態金屬霧化器之控制參數研究”,國立成功大學航太所碩士論文,1999。
    [38] 楊哲睿,“液態金屬在噴嘴不同長寬比下之霧化特性”,國立成功大學航太所碩士論文,2002。
    [39] 郭振展,“液態金屬在噴嘴低長寬比下之霧化特性”,國立成功大學航太所碩士論文,2003。
    [40] 陳哲萍,“超微粒錫粉銲料之噴霧製造研究”,國立成功大學航太所碩士論文,2004。
    [41] Ünal, A., “Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders,” Materials Science and Technology, Vol.3, pp.1029-1039, 1987.
    [42] Sedat Őzbilen, “Influence of atomizing gas on particle shape of Al and Mg powder,” Powder Technology. , Vol.102, Issue.2, Mar. 3, pp. 109-119, 1999.
    [43] Ashgriz, N. and Givi, P., “Binary Collision Dynamics of Fuel Droplets,” Heat and Fluid Flow, Vol.8, No.3, pp.205-210, 1987.
    [44] C. K. Chiang, J. Y. Poo ,and T. H. Lin, “Number of Result Drops in Binary Liquid Drop Collision,” Picast, Cofference Proceedings Vol.Ⅱ, pp.577-589, 1994.
    [45] Orme, Melissa, “Experiment on Droplet Collisions, Bounce, Coalescence and Disruption,” Prog. Energy Combust. Sci. Vol.23, pp.65-79, 1997.
    [46] 林明龍,“噴霧粒子在側噴流衝擊下之動態特性”,國立成功大學航太所碩士論文,2001。
    [47] 高韶豪,“微型噴嘴單束噴霧流在側吹下之粒子分布”,國立成功大學航太所碩士論文,2003。
    [48] 陳品任,“金屬噴霧在衝擊氣流作用下之霧化特性”,國立成功大學航太所碩士論文,2005。
    [49] Rein, M. “Phenomena of liquid droplet impact,” Fluid Dyn. Res., Vol.12, pp.61-93, 1993.
    [50] Manzello, S.L., and Yang, J.C., “An experimental investigation of water droplet impingement on a heat wax surface,” International Journal of Heat and Mass Transfer, Vol.47, pp.1701-1709, 2004.
    [51] 徐明生,“內混式平面型液態金屬噴嘴之霧化機構及其在噴覆成型之應用”,國立成功大學航太所博士論文,1999。
    [52] S.Haferl, D. Poulikakos, “Experimental investigation of the transient impact fluid dynamic and solidification of a molten microdroplet pile up,” International Journal of Heat and Mass Transfer, Vol.46, pp.535-550, 2003.
    [53] Newbery, A. P., Rayment, T., and Grant, P.S., “A Particle image Velocity Investigation of In-flight and Deposition Behaviour of Steel Droplets during Electric Arc Sprayforming,” Materials Science and Engineering A Vol.383, pp.137-145, 2004.
    [54] 黃建敦,“金屬噴霧在基板衝擊效應下之霧化特性”,國立成功大學航太所碩士論文,2006
    [55] 王覺寬,康煜昌,徐明生,楊舒然,“氣助式平面型液態金屬霧化器特性研究”,40th Conference on Aero. and Astro. of ROC, Taichung, Taiwan, ROC, Dec, 1998

    下載圖示 校內:立即公開
    校外:2007-07-31公開
    QR CODE