簡易檢索 / 詳目顯示

研究生: 吳佩郁
Wu, Pei-Yu
論文名稱: 雌激素參與脂多醣誘發蝕骨前驅細胞遷移之機轉
Mechanisms of estrogen on LPS-induced migration in osteoclast precursor cells, RAW 264.7
指導教授: 蔡美玲
Tsai, Mei-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 47
中文關鍵詞: 蝕骨前驅細胞遷移雌激素脂多醣
外文關鍵詞: Osteoclast precursor cell migration, estrogen, LPS
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨質疏鬆症是發生在老年人,尤其是雌激素缺乏的停經後婦女的疾病。在骨質疏鬆症中骨質的流失是由於骨骼的重塑不平衡,蝕骨細胞增加蝕骨作用和造骨細胞抑制骨質生成作用。蝕骨前驅細胞遷移到骨頭是蝕骨細胞分化的起始過程。蝕骨細胞從蝕骨前驅細胞分化對蝕骨細胞提供其蝕骨作用是重要的。雌激素藉由抑制蝕骨細胞分化來提供對骨頭的抗蝕骨作用。然而,雌激素抑制蝕骨前驅細胞遷移的機制仍是未知的。脂多醣引起蝕骨前驅細胞遷移和分化。細胞遷移需要肌動蛋白和鈣離子流入。Transient receptor potential (TRP) 通道是讓鈣離子流入非興奮性細胞,例如蝕骨細胞。因此我們假設脂多醣誘發TRP通道增加鈣離子的流入,影響肌動蛋白的聚合作用並導致細胞遷移。雌激素抑制脂多醣誘發的細胞遷移。我們的結果顯示ionomycin觸動鈣離子流入倒轉雌激素對脂多醣誘發細胞遷移的阻斷作用。阻斷肌動蛋白聚合作用阻礙了ionomycin對抗雌激素抑制在蝕骨前驅細胞中脂多醣誘發的細胞遷移。辣椒素是TRP vanilloid 1離子通道的活化劑,其具有和ionomycin相同的倒轉雌激素對脂多醣誘發細胞遷移的阻斷作用。我們的發現推測雌激素對脂多醣誘發蝕骨前驅細胞遷移的抑制作用需要肌動蛋白和細胞外鈣離子,而鈣離子的流入來源可能是來自於TRP通道。總結來說,我們提議雌激素藉由干擾TRP通道抑制鈣離子流入,擾亂肌動蛋白聚合作用而因起抑制了脂多醣誘發的細胞遷移而這現象可能經由雌激素受體貝它。

    Osteoporosis is a disease found in elderly and most in postmenopausal women whose estrogen is deficient. The bone loss in osteoporosis is due to imbalance in bone remodeling with elevated bone resorption by osteoclast and suppressed new bone formation by osteoblast. Migration of osteoclast precursors to bone is the initiation process of osteoclast differentiation. Differentiation of osteoclasts from osteoclast precursors is important for osteoclast to provide its function in bone resorption. 17β-estradiol (estrogen, E2) provides an anti-resorptive effect on bone through inhibiting osteoclast differentiation. However, it is still unknown the mechanism of E2 on osteoclast precursor migration. Lipopolysaccharides (LPS) induce osteoclast precursor cell migration and differentiation. Cell migration requires actin polymerization and Ca2+ influx. Transient receptor potential (TRP) channel is a possible pathway for Ca2+ to flow in nonexcitable cells, such as osteoclasts. Therefore, we hypothesized that E2 inhibits LPS-induced migration in osteoclast precursors. According to our data, we suggested that LPS induced TRP channel to increase Ca2+ influx and thus influence actin polymerization and result in cell migration. E2 significantly suppressed LPS-induced cell migration. Triggering Ca2+ influx by ionomycin reversed the inhibitory effect of E2 on LPS-induced migration. Blocking actin polymerization hindered the counteracting effect of ionomycin on LPS-induced migration which is inhibited by E2 in osteoclast precursors. Capsaicin, a TRP vanilloid 1 ion channel activator, had the same effect as ionomycin to reverse the inhibitory effect of E2 on LPS-induced migration in osteoclast. Our findings indicated that inhibitory effect of activated ERβ on LPS-induced osteoclast precursor cell migration required actin polymerization and extracellular Ca2+ and the influx source of Ca2+ may be from TRP channel. To conclude, we proposed that activated ERβ inhibited Ca2+ influx by interfering TRP, disturbed actin polymerization and thus blocked LPS-induced cell migration.

    中文摘要...I Abstract...II 誌謝...IV Index...VI List of tables...IX List of figures...X List of supplementary figures...XI Chapter I. Literature Review...1 I. Osteoporosis in postmenopausal women...1 1. Osteoporosis and estrogen...1 2. Bone remodeling...1 3. Estrogen on bone remodeling...2 II. Estrogen and osteoclast precursor...2 1. Development of osteoclast from precursor cells...2 2. Regulation on the development of osteoclast...2 3. Regulation of estrogen in osteoclast precursors...3 III. LPS and the activation of osteoclast precursors...4 IV. Ca2+-dependent migration in osteoclast precursors...4 Chapter II. The introduction of this study...5 I. Differentiation of monocyte to osteoclasts...5 II. Role of estrogen in osteoclast differentiation...5 III. Unsolved problem of estrogen on osteoclast precursors...5 IV. Unsolved problem of LPS and Ca2+ on osteoclast precursor cell migration...6 V. The purpose of this study...6 Chapter III. Materials and Methods...7 I. Drugs and Reagents...7 II. Cell culture...7 III. Crude cell homogenates...7 IV. Analysis of cell viability...8 1. Tryptan blue exclusion assay...8 2. Cell viability assay...8 V. Western blot analysis...8 VI. Migration assay...9 VII. Data analysis and statistical evaluation...10 Chapter IV. Results...11 Objective I: Effect of actin and calcium influx on LPS-induced migration...11 Experimental design 1: Effect of actin on LPS-induced migration...11 Experimental design 2: Effect of Ca2+ on LPS-induced migration...11 Experimental design 3: The source of Ca2+ in LPS-induced migration...12 Objective II: Effect of 17β-estradiol on LPS-induced migration...12 Experimental design 1: Inhibitory effect of E2 on LPS-induced migration...12 Experimental design 2: Effect of E2 on LPS-induced osteoclast migration through Ca2+ influx and cytoskeleton...13 Experimental design 3: Effect of E2 on LPS-induced osteoclast migration through interfering TRP channel...14 Chapter V. Discussion...15 I. Summary of this study...15 II. LPS-induced migration...15 III. Effect of Ca2+ on LPS-induced migration...16 IV. Role of TRP channel on Ca2+-dependent LPS-induced migration...16 V. Effect of actin on LPS-induced migration...17 VI. Effect of E2 on LPS-induced migration...17 VII. Involvement of actin and Ca2+ in the inhibition of LPS-induced migration by estrogen...18 VIII. Source of Ca2+ influx in the inhibition of LPS-induced migration by estrogen...18 IX. Significance of this study...19 Chapter VI. References.....20 Chapter VII. Tables........26 Chapter VIII. Figures......28 Chapter IX. Supplementary figures......39 Curriculum Vitae......47

    1. Albright F, Bloomberg,E.,andSmith, P.H.: Postmenopausal osteoporosis. TransAssocAmPhysicians 1940, 55:298-305.
    2. Albright F, Smith, P. H., and Richardson, A. M. : Postmenopausal osteoporosis its clinical features. Journal of the American Medical Association 1941, 116:2465-2474.
    3. Lindsay R, Cosman F: Estrogen in prevention and treatment of osteoporosis. Ann N Y Acad Sci 1990, 592:326-333; discussion 334-345.
    4. Aitken JM, Hart DM, Lindsay R: Oestrogen replacement therapy for prevention of osteoporosis after oophorectomy. Br Med J 1973, 3:515-518.
    5. Riggs BL, Khosla S, Melton LJ, 3rd: Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002, 23:279-302.
    6. Weitzmann MN, Pacifici R: Estrogen regulation of immune cell bone interactions. Ann N Y Acad Sci 2006, 1068:256-274.
    7. da Paz LH, de Falco V, Teng NC, dos Reis LM, Pereira RM, Jorgetti V: Effect of 17beta-estradiol or alendronate on the bone densitometry, bone histomorphometry and bone metabolism of ovariectomized rats. Braz J Med Biol Res 2001, 34:1015-1022.
    8. Syed F, Khosla S: Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun 2005, 328:688-696.
    9. Hadjidakis DJ, Androulakis, II: Bone remodeling. Ann N Y Acad Sci 2006, 1092:385-396.
    10. Martin T, Gooi JH, Sims NA: Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 2009, 19:73-88.
    11. Sims NA, Gooi JH: Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 2008, 19:444-451.
    12. Athanasou NA: Cellular biology of bone-resorbing cells. J Bone Joint Surg Am 1996, 78:1096-1112.
    13. Katagiri T, Takahashi N: Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 2002, 8:147-159.
    14. Suda T, Takahashi N, Martin TJ: Modulation of osteoclast differentiation. Endocr Rev 1992, 13:66-80.
    15. Compston JE: Sex steroids and bone. Physiol Rev 2001, 81:419-447.
    16. Spelsberg TC, Subramaniam M, Riggs BL, Khosla S: The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endocrinol 1999, 13:819-828.
    17. Robinson JA, Harris SA, Riggs BL, Spelsberg TC: Estrogen regulation of human osteoblastic cell proliferation and differentiation. Endocrinology 1997, 138:2919-2927.
    18. Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC: Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 1998, 101:1942-1950.
    19. Di Gregorio GB, Yamamoto M, Ali AA, Abe E, Roberson P, Manolagas SC, Jilka RL: Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17 beta-estradiol. J Clin Invest 2001, 107:803-812.
    20. Frenkel B, Hong A, Baniwal SK, Coetzee GA, Ohlsson C, Khalid O, Gabet Y: Regulation of adult bone turnover by sex steroids. J Cell Physiol 2010, 224:305-310.
    21. Coccia PF, Krivit W, Cervenka J, Clawson C, Kersey JH, Kim TH, Nesbit ME, Ramsay NK, Warkentin PI, Teitelbaum SL, et al: Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med 1980, 302:701-708.
    22. Mundy GR, Varani J, Orr W, Gondek MD, Ward PA: Resorbing bone is chemotactic for monocytes. Nature 1978, 275:132-135.
    23. Bar-Shavit Z: The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 2007, 102:1130-1139.
    24. Teitelbaum SL: Bone resorption by osteoclasts. Science 2000, 289:1504-1508.
    25. Pacifici R: Estrogen deficiency, T cells and bone loss. Cell Immunol 2008, 252:68-80.
    26. Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T: Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 1993, 91:257-263.
    27. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, et al: Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998, 139:1329-1337.
    28. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999, 20:345-357.
    29. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, et al: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998, 95:3597-3602.
    30. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, et al: Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 1999, 96:3540-3545.
    31. Jilka RL: Cytokines, bone remodeling, and estrogen deficiency: a 1998 update. Bone 1998, 23:75-81.
    32. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T, et al.: IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990, 145:3297-3303.
    33. Kawano M, Yamamoto I, Iwato K, Tanaka H, Asaoku H, Tanabe O, Ishikawa H, Nobuyoshi M, Ohmoto Y, Hirai Y, et al.: Interleukin-1 beta rather than lymphotoxin as the major bone resorbing activity in human multiple myeloma. Blood 1989, 73:1646-1649.
    34. Oursler MJ, Landers JP, Riggs BL, Spelsberg TC: Oestrogen effects on osteoblasts and osteoclasts. Ann Med 1993, 25:361-371.
    35. Riggs BL: The mechanisms of estrogen regulation of bone resorption. J Clin Invest 2000, 106:1203-1204.
    36. Jilka RL, Passeri G, Girasole G, Cooper S, Abrams J, Broxmeyer H, Manolagas SC: Estrogen loss upregulates hematopoiesis in the mouse: a mediating role of IL-6. Exp Hematol 1995, 23:500-506.
    37. Ramalho AC, Couttet P, Baudoin C, Morieux C, Graulet AM, de Vernejoul MC, Cohen-Solal ME: Estradiol and raloxifene decrease the formation of multinucleate cells in human bone marrow cultures. Eur Cytokine Netw 2002, 13:39-45.
    38. Sorensen MG, Henriksen K, Dziegiel MH, Tanko LB, Karsdal MA: Estrogen directly attenuates human osteoclastogenesis, but has no effect on resorption by mature osteoclasts. DNA Cell Biol 2006, 25:475-483.
    39. Manolagas SC, Jilka RL: Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995, 332:305-311.
    40. Pacifici R, Vannice JL, Rifas L, Kimble RB: Monocytic secretion of interleukin-1 receptor antagonist in normal and osteoporotic women: effects of menopause and estrogen/progesterone therapy. J Clin Endocrinol Metab 1993, 77:1135-1141.
    41. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL: Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003, 111:1221-1230.
    42. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL: Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999, 140:4367-4370.
    43. Kimble RB, Srivastava S, Ross FP, Matayoshi A, Pacifici R: Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 1996, 271:28890-28897.
    44. Nair SP, Meghji S, Wilson M, Reddi K, White P, Henderson B: Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun 1996, 64:2371-2380.
    45. Hausmann E, Raisz LG, Miller WA: Endotoxin: stimulation of bone resorption in tissue culture. Science 1970, 168:862-864.
    46. Hausmann E, Weinfeld N, Miller WA: Effects of lipopolysaccharides on bone resorption in tissue culture. Calcif Tissue Res 1972, 9:272-282.
    47. Henderson B, Nair SP: Hard labour: bacterial infection of the skeleton. Trends Microbiol 2003, 11:570-577.
    48. Hanazawa S, Amano S, Nakada K, Ohmori Y, Miyoshi T, Hirose K, Kitano S: Biological characterization of interleukin-1-like cytokine produced by cultured bone cells from newborn mouse calvaria. Calcif Tissue Int 1987, 41:31-37.
    49. Keeting PE, Rifas L, Harris SA, Colvard DS, Spelsberg TC, Peck WA, Riggs BL: Evidence for interleukin-1 beta production by cultured normal human osteoblast-like cells. J Bone Miner Res 1991, 6:827-833.
    50. Nason R, Jung JY, Chole RA: Lipopolysaccharide-induced osteoclastogenesis from mononuclear precursors: a mechanism for osteolysis in chronic otitis. J Assoc Res Otolaryngol 2009, 10:151-160.
    51. Zou W, Bar-Shavit Z: Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res 2002, 17:1211-1218.
    52. Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL: Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 1997, 100:1557-1565.
    53. Islam S, Hassan F, Tumurkhuu G, Dagvadorj J, Koide N, Naiki Y, Mori I, Yoshida T, Yokochi T: Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem Biophys Res Commun 2007, 360:346-351.
    54. Tajima T, Murata T, Aritake K, Urade Y, Hirai H, Nakamura M, Ozaki H, Hori M: Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). J Pharmacol Exp Ther 2008, 326:493-501.
    55. Ramsey IS, Delling M, Clapham DE: An introduction to TRP channels. Annu Rev Physiol 2006, 68:619-647.
    56. Pedersen SF, Owsianik G, Nilius B: TRP channels: an overview. Cell Calcium 2005, 38:233-252.
    57. Kleveta G, Borzecka K, Zdioruk M, Czerkies M, Kuberczyk H, Sybirna N, Sobota A, Kwiatkowska K: LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility. J Cell Biochem 2012, 113:80-92.
    58. Faccio R, Novack DV, Zallone A, Ross FP, Teitelbaum SL: Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by beta3 integrin. J Cell Biol 2003, 162:499-509.
    59. Wu TT, Chen TL, Chen RM: Lipopolysaccharide triggers macrophage activation of inflammatory cytokine expression, chemotaxis, phagocytosis, and oxidative ability via a toll-like receptor 4-dependent pathway: validated by RNA interference. Toxicol Lett 2009, 191:195-202.
    60. Boudot C, Saidak Z, Boulanouar AK, Petit L, Gouilleux F, Massy Z, Brazier M, Mentaverri R, Kamel S: Implication of the calcium sensing receptor and the Phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Bone 2010, 46:1416-1423.
    61. Schiff PB, Fant J, Horwitz SB: Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277:665-667.
    62. Cooper JA: Effects of cytochalasin and phalloidin on actin. J Cell Biol 1987, 105:1473-1478.
    63. Liu C, Hermann TE: Characterization of ionomycin as a calcium ionophore. J Biol Chem 1978, 253:5892-5894.
    64. Lund TD, Rovis T, Chung WC, Handa RJ: Novel actions of estrogen receptor-beta on anxiety-related behaviors. Endocrinology 2005, 146:797-807.
    65. Le Clainche C, Carlier MF: Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 2008, 88:489-513.
    66. Naccache PH, Showell HJ, Becker EL, Sha'afi RI: Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor. J Cell Biol 1977, 73:428-444.
    67. Sanchez-Madrid F, del Pozo MA: Leukocyte polarization in cell migration and immune interactions. EMBO J 1999, 18:501-511.
    68. Schiffmann E: Leukocyte chemotaxis. Annu Rev Physiol 1982, 44:553-568.
    69. Zigmond SH: Chemotaxis by polymorphonuclear leukocytes. J Cell Biol 1978, 77:269-287.
    70. Mormann M, Thederan M, Nackchbandi I, Giese T, Wagner C, Hansch GM: Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption. Mol Immunol 2008, 45:3330-3337.
    71. Zhuang L, Jung JY, Wang EW, Houlihan P, Ramos L, Pashia M, Chole RA: Pseudomonas aeruginosa lipopolysaccharide induces osteoclastogenesis through a toll-like receptor 4 mediated pathway in vitro and in vivo. Laryngoscope 2007, 117:841-847.
    72. Idris AI, Landao-Bassonga E, Ralston SH: The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone 2010, 46:1089-1099.
    73. Yamashiro K, Sasano T, Tojo K, Namekata I, Kurokawa J, Sawada N, Suganami T, Kamei Y, Tanaka H, Tajima N, et al: Role of transient receptor potential vanilloid 2 in LPS-induced cytokine production in macrophages. Biochem Biophys Res Commun 2010, 398:284-289.
    74. Bord S, Horner A, Beavan S, Compston J: Estrogen receptors alpha and beta are differentially expressed in developing human bone. J Clin Endocrinol Metab 2001, 86:2309-2314.

    下載圖示 校內:2015-09-12公開
    校外:2015-09-12公開
    QR CODE