| 研究生: |
王怡涵 Wang, Yi-Han |
|---|---|
| 論文名稱: |
台灣市區道路低碳鋪面設計策略:基於力學經驗之鋪面設計與減碳策略分析 Low-Carbon Pavement Design Strategies for Local Roads in Taiwan: Mechanistic-Empirical Analysis of Pavement Design and Carbon Reduction Strategies |
| 指導教授: |
楊士賢
Yang, Shih-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 力學-經驗設計法 、鋪面碳足跡 、生命週期評估 、市區道路 |
| 外文關鍵詞: | carbon emissions, local roads, pavement performance, LCA |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球對環境永續議題的日益重視,蘊含碳已成為鋪面工程設計中的關鍵考量。然而,國內市區道路設計仍多依賴傳統經驗法,普遍缺乏對鋪面結構力學行為及蘊含碳的綜合評估。鑑於市區道路因其龐大的總量體與高頻率的維護需求,在減碳方面具備顯著潛力,本研究旨在建構一套適用於台灣市區道路的整合性設計評估架構,在設計階段即導入結構性能與環境衝擊的雙重考量。為此,本研究結合本土化參數與力學分析工具(MultiSmart3D),並應用AASHTO MEPDG 之績效預測模型,進行鋪面長期績效(含疲勞裂縫、車轍與國際糙度指標)的力學-經驗模擬分析。同時,採用生命週期評估方法,彙整國內外文獻資料,以量化不同鋪面材料與結構組合之蘊含碳。進一步利用複雜系統響應法,建立一組連結關鍵設計參數(如交通量、行車速度、鋪面厚度與材料類型)與總體碳排放的預測模型。
鋪面結構研究結果顯示,鋪面厚度與行車速度是影響結構性能的關鍵因子,其中增加面層厚度可以有效降低應變與裂縫的產生;而車轍與 IRI 則對總厚度變化更為敏感。此外,低速行駛將顯著加劇鋪面劣化。在碳足跡方面,溫拌瀝青因其較低的製程溫度,相較於傳統熱拌瀝青可減少碳足跡;再生瀝青因其使用再生粒料也可減少碳足跡;而水泥處理底層雖具較高結構剛性,但其蘊含碳高於其他材料,凸顯了材料工法選擇在低碳設計中的重要性。
研究根據模擬結果,建立了台灣市區道路鋪面之碳排放基線,可作為未來設計方案的評估基準。同時,利用複雜系統響應法開發出一組連結關鍵設計參數與碳排放的預測回歸公式。此一整合性評估方法與量化工具,不僅能協助設計者在規劃初期即取得結構性能與環境衝擊的平衡 ,更為推動台灣道路工程的永續發展提供堅實的參考依據。
With growing concerns over global climate change and environmental sustainability, carbon emissions have become a critical consideration in pavement design. Urban roadways, characterized by their dense layout and frequent maintenance requirements, represent a key target for emission reduction. However, current pavement design practices still primarily rely on empirical methods and lack a comprehensive integration of structural response and environmental performance.
This study presents an integrated methodology that incorporates both pavement performance and carbon emission assessment into the early stages of urban roadway design. A localized mechanistic–empirical analysis framework was established by integrating the MultiSmart3D with empirical performance models from the AASHTO MEPDG. key pavement responses, including cracking, rutting, and the International Roughness Index (IRI), were simulated under various combinations of vehicle speed, traffic loading, and structural layer stiffness.
To quantify the environmental impact, carbon emissions associated with various pavement structures were estimated using life cycle assessment (LCA), referencing Taiwan’s localized carbon footprint database along with literature-based emission factors from other countries. A carbon baseline was established for typical urban pavement cross-sections. Subsequently, the Complex System Response (CSR) method was employed to construct a regression model incorporating key design variables such as layer thickness, traffic load, material type, and vehicle speed. The proposed approach offers a decision-support tool that facilitates the integration of environmental considerations into the pavement design process. By combining structural performance simulation with carbon emission analysis, the results enable a more sustainable and optimized approach to urban pavement planning.
呂柏璋(2012)。溫拌瀝青混凝土應用於台灣地區可行性研究(碩士論文,國立中央大學土木工程學系),國立中央大學。
李寧、周家蓓,使用再生瀝青混凝土之節能與減碳效益探討,鋪面工程,第11卷第1期(2013):頁55-66。
徐驊煒,再生瀝青混凝土減碳效益之研究,碩士論文,國立臺灣科技大學營建工程系,2024
楊典樑,柔性路面工程之二氧化碳排放量評估,碩士論文,逢甲大學土木工程所,2010。
行政院環境保護署(2019)。碳足跡產品類別規則 (CFP-PCR):基礎建設-道路(第3.0版)。行政院環境保護署,台北市。核准日期:2019年10月8日。文件編號:19-023。
邱柏凱(2019)。利用複合生命週期評估建立台灣道路工程材料碳足跡計算架構,碩士論文,國立成功大學土木工程系。
岳含潤(2021)。基於矩陣擴增法發展營建材料碳足跡分析架構-以水泥與瀝青混凝土材料為例(碩士論文),國立成功大學土木工程系。
交通部民用航空局, & 國立成功大學. (2023). 機場柔性鋪面施工規範研究委託專業服務案 第二階段報告. 交通部民用航空局.
吳東縉,應用改良式平整度指標AARI於預測模式之建立,碩士論文,2010
江崇標,重車合理載重季載重放寬對路面績效影響之研究,碩士論文,1994
內政部營建署(2002)。市區道路管理維護與技術規範手冊研究:市區道路鋪面養護作業手冊。內政部營建署,台北市。
国土交通省道路局, 舗装点検要領, 国土交通省, 2017.
吳冠伋,開發設計導向之永續運輸基礎設施管理(STIM)碳足跡評估工具—公路橋梁系統, 碩士論文, 國立成功大學土木工程,2018。
柯博仁,台灣高速公路鋪面養護工法決策樹建立之研究,碩士論文,國立成功大學土木工程學系, 2024。
Aurangzeb, Q., et al., Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resources, Conservation and Recycling, 2014. 83: p. 77-86.
Azadgoleh, M. A., Mohammadi, M. M., AzariJafari, H., Santos, J., Ahmadi, A., Alavi, M. Z., & Ayar, P. (2024). A comparative life cycle assessment (LCA), life cycle cost analysis (LCCA), mechanical and long-term leaching evaluation of road pavement structures containing multiple secondary materials. Journal of Cleaner Production, 458, 142484.
AASHTO, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37A Final Report, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, USA, 2004.
A. N. Nafisah, Kajian Daur Hidup (LCA) untuk Material Dasar Jalan: Studi Kasus Cement Treated Recycling Base (CTRB), Bandung, Indonesia: Pusat Penelitian dan Pengembangan Jalan dan Jembatan, 2023.
AASHTO. (2020). Mechanistic-Empirical Pavement Design Guide (MEPDG) Manual. American Association of State Highway and Transportation Officials.
American Association of State Highway and Transportation Officials (AASHTO), Standard Specification for Classification of Soils and Soil–Aggregate Mixtures for Highway Construction Purposes, AASHTO M 145-91 (2021), Washington, DC, USA, 2021.
Al Adday, F. (2019). Study of reducing the environmental impact of CO2 emissions of flexible pavement materials: A critical review. International Journal of Development Research, 9(4), 26883-26889.
B. Lotfi and M. W. Witczak, "Dynamic Characterization of Cement-Treated Base and Subbase Materials," Transportation Research Record: Journal of the Transportation Research Board, no. 1031, pp. 41–53, 1985.
Chehovits, J., & Galehouse, L. (2010). Energy usage and greenhouse gas emissions of pavement preservation processes for asphalt concrete pavements. In Compendium of Papers from the First International Conference on Pavement Preservation (Paper 65). National Center for Pavement Preservation.
Carvalho, R. L., & Schwartz, C. W. (2006): Comparisons of flexible pavement designs: AASHTO empirical versus NCHRP project 1–37A mechanistic–empirical. Transportation Research Record., 1947(1): 167-174.
Chatti, K., Salama, H., & El Mohtar, C. (2004). Effect of heavy trucks with large axle groups on asphalt pavement damage. In Proceedings 8th International Symposium on Heavy Vehicle Weights and Dimensions.
Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations LCA Methodology, Best Available Technology, and Near-Future Reduction Potential
Das, A., & Pandey, B. B. (1999). Mechanistic-empirical design of bituminous roads: An Indian perspective. Journal of Transportation Engineering, 125(5), 463–471.。Indian Roads Congress (IRC). (2018). Guidelines for the design of flexible pavements (IRC:37-2018). Indian Roads Congress.。
Fakhri, M., Ghanizadeh, A. R., & Dolatalizadeh, M. (2013). Characterizing Horizontal Response Pulse at the Bottom of Asphalt Layer Based on Viscoelastic Analysis. International Journal of Pavement Research and Technology, 6(4), 379–385.
Gu, F., Ma, Y., Wang, H., & Luo, X. (2019). Structural performance and sustainability assessment of cold central-plant and in-place recycled asphalt pavements: A case study. Journal of Cleaner Production, 229, 492–501.
Hasan, A., Hasan, U., Whyte, A., & Al Jassmi, H. (2022). Lifecycle analysis of recycled asphalt pavements: Case study scenario analyses of an urban highway section. Case Studies in Construction Materials, 17, e01519.
Huang, Y., Bird, R., & Heidrich, O. (2009). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17(2), 283–296.
Horvath, A., and Hendrickson, C. (1998a). “Comparison of environmental implications of asphalt and steel-reinforced concrete pavements.” Transportation Research Record 1626, Transportation Research Board, Washington, DC, 105–113.
Indian Roads Congress,IRC37-2018 Guidelines for the Design of Flexible Pavements, 4th Rev., New Delhi IRC, Nov. 2018.
J. C. Pais, S. I. R. Amorim, and M. J. C. Minhoto, "Impact of traffic overload on road pavement performance," Journal of Transportation Engineering, vol. 139, no. 9, pp. 873-879, 2013. doi: 10.1061/(ASCE)TE.1943-5436.0000571
J. Shacat, R. Willis, and B. Ciavola, The Carbon Footprint of Asphalt Pavements: A Reference Document for Decarbonization, NAPA Special Report SIP-109, National Asphalt Pavement Association, Mar. 2024.
Kim, Y. R., Jadoun, F. M., Hou, T., & Muthadi, N. (2011). Local calibration of the MEPDG for flexible pavement design (Final report, Research Project No. HWY-2007-07). North Carolina Department of Transportation.
Lin, Z.-T., Chen, S.-H., Hsu, S.-B., Hsu, K.-J., & Tseng, W.-Y. (2015). Engineering property evaluation of cold mix asphalt and cold in-place recycling technology. Pavement Engineering, 14(2), 25–33.
Li, H., Jiang, J., & Li, Q. (2023). Economic and environmental assessment of a green pavement recycling solution using foamed asphalt binder based on LCA and LCCA. Transportation Engineering, 13, 100185
Lee, J.; Edil, T.; Tinjum, J.; Benson, C. Quantitative assessment of environmental and economic benefits of recycled materials in highway construction. Transp. Res. Rec. J. Transp. Res. Board 2010, 2158, 138–142.
Mensahn, E. S. K., Wada, S. A., & Lugeiyamu, L. (2022). Roadway pavement design methods, structural approaches and relevant computer algorithms: A critical review. International Journal of Transportation Engineering and Technology, 8(1), 13-23.。
M. Sayers, Guidelines for Conducting and Calibrating Road Roughness Measurements, World Bank, Washington, DC, 2000.
M. I. Darter, L. Titus-Glover, and H. L. Von Quintus, Implementation of the Mechanistic-Empirical Pavement Design Guide in Utah: Validation, calibration, and development of the UDOT MEPDG user's guide, Utah Department of Transportation, Report No. UT-09.11, 2009. Available:
M. S. Hossain, H. Nair, and H. C. Ozyildirim, Determination of Mechanical Properties for Cement-Treated Aggregate Base, Virginia Transportation Research Council, Final Report VTRC 17-R21, Jun. 2017
Martinez-Arguelles, G., Vega Araujo, D., & Santos, J. (2020). Carbon footprint of asphalt road pavements using warm mix asphalt with recycled concrete aggregates: A Colombian case study. International Symposium on Pavement, Roadway, and Bridge Life Cycle Assessment.
Po, Y.-M., Tsai, K.-L., Pan, E., Lin, C.-P., & Nirwal, S. (2024). Fatigue and Rutting Life Design of Layered Flexible Pavements Via Advanced MultiSmart3D. International Journal of Pavement Research and Technology
Park, K., Hwang, Y., Seo, S., and Seo, H., Quantitative Assessment of Environmental Impacts on Life Cycle of Highways, Journal of Construction Engineering and Management, vol. 129, no. 1, pp. 25-31, Feb. 2003.
Po, Y.-M. (2023). User Manual of MultiSmart3D_Dynamic GUI App.
Prowell, B. D. and Hurley, G. C., (2008), “Warm Mix Asphalt: Best Practices,” National Asphalt Pavement Association 53rd Annual Meeting.
Rodríguez-Alloza, A. M., Malik, A., Lenzen, M., & Gallego, J. (2015). Hybrid input–output life cycle assessment of warm mix asphalt mixtures. Journal of Cleaner Production, 90, 171–182.
Saeedzadeh, R., et al., Sustainability Assessment of Recycled Asphalt Mixtures Based on Performance in Full-Scale Testing. Journal of Transportation
Stripple, H. (2001). Life cycle assessment of road: A pilot study for inventory analysis. Swedish Environmental Research Institute (IVL). B1210E.
Santos, J., Bryce, J., & Flintsch, G. (2018). A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices. Virginia Center for Transportation Innovation and Research (VCTIR), Report No. VCTIR 18-R14.
Suh, Y.-C., Kwon, S.-H., Jung, D.-H., Jeong, J.-H., & Kang, M.-S. (2017). Development of HPCI prediction model for concrete pavement using expressway PMS database. International Journal of Highway Engineering, 19(6), 83-95.
Swan, D. J., Tardif, R., Hajek, J. J., & Hein, D. K. (2008). Development of regional traffic data for the mechanistic–empirical pavement design guide. Transportation research record, 2049(1), 54–62.
Sun, L., Qin, Y., Zhu, X., & Xie, W. (2018). Initiation and propagation of top-down cracking in asphalt pavement. Applied Sciences, 8(5), 774.
Treloar, G., Love, P., and Crawford, R. (2004). “Hybrid life-cycle inventory for road construction and use.” J. Constr. Eng. Manage., 10.1061/ (ASCE)0733-9364(2004)130:1(43), 43–49.
Tatari, O., Nazzal, M., & Kucukvar, M. (2012). "Comparative sustainability assessment of warm-mix asphalts: A thermodynamic-based hybrid life cycle analysis." Resources, Conservation and Recycling, 58, 18–24.
Ulloa, A., Hajj, E. Y., Siddharthan, R. V., Sebaaly, P. E. (2013) "Equiva-lent Loading Frequencies for Dynamic Analysis of Asphalt Pavements", Journal of Materials in Civil Engineering, 25(9), pp. 1162–1170.
Von Quintus, H. L., Simpson, A. L., & Mallela, J. (2009). Local Calibration of the MEPDG for Flexible Pavement Design. Federal Highway Administration.
Vaitkus, A., Cygas, D., Laurinavicius, A. and Perveneckas, Z., (2009), “Analysis and Evaluation of Possibilities for the Use of Warm Mix Asphalt in Lithuania,” The Baltic Journal of Road and Bridge Engineering, pp.80-86.
Vidal et al ., Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement,2013
W. D. Powell, J. F. Potter, H. C. Mayhew, and M. E. Nunn,The Structural Design of Bituminous Roads, TRRL Report 1132, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K., 1984.
Weiland, C. J., & Muench, S. T. (2008). Life cycle assessment of pavement structures: A review. Proceedings of the Transportation Research Board Annual Meeting.
Wu, S., & Qian, S., "Comparison of Warm Mix Asphalt and Hot Mix Asphalt Pavement Based on Life Cycle Assessment," Journal Name, vol. 14, no. 2, pp. 87-96, 2022.
Y. H. Huang,Pavement Analysis and Design, 2nd ed. Upper Saddle River, NJ Pearson Prentice Hall, 2004.
校內:不公開