簡易檢索 / 詳目顯示

研究生: 顧迪
Gu, Di
論文名稱: 發展Wiimote室內定位技術與全向移動載具軌跡追蹤控制器與其於智慧生活之應用
Development of Wiimote Indoor Localization Technology and Omni-directional vehicle Trajectory Control for Intelligent Life Applications
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 219
中文關鍵詞: 居家機器人Wiimote室內定位全向移動載具軌跡追蹤控制使用者介面
外文關鍵詞: Indoor Robot, Wiimote, Indoor Localization System, Omni-Directional vehicle, Trajectory Tracking control, User Interface
相關次數: 點閱:115下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前世界各國產業用與服務用機器人的開發技術漸趨成熟並成功應用於許多領域,未來機器人產品與社會大眾的關係必將日趨密切,服務用之智慧型機器人的產製亦為未來發展重點。近年來,服務型機器人被廣泛地運用在娛樂、生活援助、家庭、災害救援與醫療輔助等領域,本文研究對象以運用在居家方面之服務型機器人為主,發展一套控制系統來精準控制機器人在地形複雜之室內環境中移動,有效提升機器人之工作效率,並且針對機器人在應用上的需求來設計專屬之使用者介面,以改善機器人運用上的實用度。而為提升室內機器人於室內環境運作的可靠度,必須依賴高精度之室內定位技術,首先,本文將發展高精度之Wiimote 2D室內定位系統,即時提供機器人位置以及偏轉方向;接著整合全向移動載具(Omni-directional vehicle)發展軌跡追蹤控制器,可以有效控制載具精準移動;最後則針對Wiimote 2D定位系統以及全向移動載具系統發展物件式互動介面,以提升使用者與機器人之間的互動效果,改善機器人在操作時的便利性。由實驗結果可知,Wiimote 2D定位系統其定位精度在公分等級,且透過該定位系統之高定位精度特性,配合軌跡追蹤控制器將能使得載具非常精確的執行我們所希望的移位動作,而本文針對整體控制系統所設計之互動介面,則可以有效提升使用者在操作機器人時的可控性與可觀性。

    In recent years, service mobile robots have been widely used in the field of entertainment, intelligent life, and home-patient care. For these applications, an intelligent mobile robot actually serves as the role of servants. As a result, in addition to the task-dependent functionalities in autoficial intelligence, a successful indoor localization and control of mobile robots, as well as an effective man-machine interface would be critical since they define the basic maneuverability of the carrier. In order to achieve the above-mentioned goals, the interaction between human and mobile robots must be strengthened by enhancing the accuracy of indoor localization, the dynamic performance of mobile robots, and the user-friendliness of the controlling interface between users and mobile carriers. To fulfill these requirements, in this thesis, an accurate wiimote indoor localization scheme is proposed for obtaining reliable global position information. This scheme can provide both accurate translation and rotation information for subsequent robot indoor motion control. Furthermore, the dynamics of omniwheels are analyzed and properly modelled, followed by PID controller design and parametric studies. The experimental results indicate that by integrating with the wiimote localization scheme, the mobile robot can be effectively controlled with tracking error within one centimeter. Finally, a graphic-based user interface is designed and implemented under a NI LabView environment. This interface creates an indoor map and users can plan the motion trajectory control via common input devices such as mouses. Essential case studies have been successfully performed to demonstrate the applicability for controlling and monitoring the position information of indoor mobile robots via such an interface. In the future, it is possible to further incorporate with task planning in computer sciences or artificial intelligence to realize the indoor mobile robot applications in various aspects of intelligent life, smart building technology, and home-patient care.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 X 圖目錄 XI 符號說明 XX 第一章 緒論 1.1 前言 1 1.2 相關研究之簡介 4 1.3 研究動機與目標 7 1.4 全文架構 9 第二章 研究背景介紹 2.1 本章介紹 11 2.2 室內定位技術之相關研究 12 2.3 Wiimote室內定位技術之研究 16 2.3.1 Wiimote硬體架構 16 2.3.2 LabVIEW圖控程式之系統架構 18 2.3.3 定位演算法與定位限制條件 19 2.3.4 定位實驗結果 24 2.4 全向移動載具之相關研究 26 2.5 使用者介面之相關研究 30 2.6 本章結論 33 第三章 Wiimote 2D平面定位技術 3.1 本章介紹 35 3.2 載具偏轉角度修正法 36 3.2.1 載具偏轉角度辨識 36 3.2.2 Camera座標軸修正 38 3.3 2D平面定位技術 40 3.3.1 IR LEDs之取樣 41 3.3.2 Global座標軸辨識 44 3.3.3 全角度辨識與Camera座標軸修正 46 3.3.4 決定目標IR與定位向量累積 49 3.4 本章結論 54 第四章 Wiimote定位系統之定位精度實驗 4.1 本章介紹 55 4.2 實驗系統建立 56 4.2.1 載具偏轉角修正之實驗架構 58 4.2.2 2D定位系統定位之實驗架構 60 4.3 載具偏轉角修正之實驗 62 4.3.1 偏轉角度觀測 62 4.3.2 載具偏轉角與IR之座標值關係 63 4.3.3 座標修正效果 65 4.4 2D定位系統定位實驗 67 4.4.1 各種運動路徑定位實驗 67 4.4.2 定位誤差討論 78 4.5 長距離移動之誤差累積量 83 4.6 本章結論 85 第五章 全向移動載具軌跡追蹤控制器之設計與模擬 5.1 本章介紹 87 5.2 整合Wiimote 2D定位系統發展軌跡追蹤器 88 5.3 全向移動載具之運動數學模型 91 5.3.1 機構部分數學模型 91 5.3.2 直流馬達數學模型 96 5.3.3 全向移動載具之整體系統數學模型 98 5.4 PID軌跡追蹤控制器設計 100 5.4.1 計算轉矩控制法則 100 5.4.2 PID控制器設計 101 5.5 PID軌跡追蹤控制器之模擬結果 106 5.5.1 步階訊號軌跡追蹤模擬 107 5.5.2 軌跡追蹤能力 112 5.6 本章結論 116 第六章 PID軌跡控制器之軌跡追蹤實驗 6.1 本章介紹 117 6.2 實驗系統建立 118 6.2.1 全向移動載具架構 118 6.2.2 整體實驗系統架構 122 6.3 實驗結果 126 6.3.1 步階訊號追蹤實驗 126 6.3.2 直線命令軌跡追蹤實驗 131 6.3.3 矩形命令軌跡追蹤實驗 134 6.3.4 圓形命令軌跡追蹤實驗 138 6.4 實驗結果之誤差討論 142 6.5 本章結論 146 第七章 發展物件式互動介面與系統整合之實機測試 7.1 本章介紹 148 7.2 LabVIEW人機介面介紹 149 7.3 物件式互動面板發展 152 7.3.1 全方向操作器 152 7.3.2 定位資訊顯示之地圖面板 155 7.3.3 地圖面板之目標操作 157 7.4 互動式面板之實機操作 160 7.5 互動面板之操作效能討論 167 7.6 本章結論 170 第八章 研究結果與討論 8.1 本章介紹 171 8.2 Wiimote 2D定位系統定位能力討論 172 8.3 全向移動載具軌跡追蹤能力討論 177 8.4 運用於全向移動載具系統之互動介面操作能力 184 8.5 整體研究成果與延伸討論 186 8.6 本章結論 189 第九章 結論與未來展望 9.1 全文歸納 190 9.2 結論 193 9.3 本文貢獻 195 9.4 未來展望 197 參考文獻 200 附錄A 實驗硬體設備 附錄A1 Billionton Bluetooth USB dongle之詳細規格 207 附錄A2 TSAL6400紅外線LED之詳細規格表 208 附錄A3 BS2系列處理器之詳細規格表 209 附錄B 控制程式 附錄B1 Wiimote 2D定位程式 210 附錄B2 全向移動載具軌跡追蹤控制程式 214 附錄B3 物件式互動介面程式 217  

    [1] Triadtech Enterprise Co., Ltd., http://www.tec-robot.com.tw/eng-profile.html/
    [2] Buildup International Trading Co., Ltd., http://www.asiamachinery.net/supplier/profile.asp?SupID=4182
    [3] Taiwan Daifuku Co., Ltd., http://www.taiwandaifuku.com/company/index.php
    [4] International Federation of Robotics, http://www.ifr.org/
    [5] MARKETSANDMARKETS, http://www.marketsandmarkets.com/
    [6] TOYOTA Inc., http://www.toyota.co.jp/en/special/robot/
    [7] IROBOT Inc., http://store.irobot.com
    [8] C. Kee, D. Yun, and H. Jun, "Precise calibration method of pseudolite positions in indoor navigation systems," Computers & Mathematics with Applications, vol. 46, pp. 1711-1724, 2003.
    [9] H. M. Khoury, and V. R. Kamat, "Evaluation of position tracking technologies for user localization in indoor construction environments," Automation in Construction, vol. 18, pp. 444-457, 2009.
    [10] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, "LANDMARC: Indoor location sensing using active RFID," Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, pp.407-415, 2003.
    [11] R. Want, A. Hopper, V. Falcão, and J. Gibbons,, "The active badge location system, " ACM Transaction on Information Systems, vol.40, pp. 91-102, 1992.
    [12] M. Maeda, T. Ogawa, T. Machida, and H. Takemura, ”Position detection for a navigation support by augmented reality using infrared identifications”, Technical Report of the Institute of Electronics, Information and Communication Engineers of Japan, Image Engineering, vol. 102, pp. 59-64, 2002.
    [13] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The cricket location-support system," in Proc. 6th ACM MOBICOM, Boston, MA 2000.
    [14] G. Mao, B. Fidan, and B. D. O. Anderson , "Wireless sensor network localization techniques," Computer Networks, vol. 51, pp. 2529-2553, 2007.
    [15] P. Baronti, P. Pillai1, V. Chook, S. Chessa, A. Gotta, Y. F. Hu,, "Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards," Computer Communications, vol. 30, pp. 1655-1695, 2007.
    [16] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer Networks, vol. 52, pp. 2292-2330, 2008.
    [17] S. Yun, J. Lee, W. Chung, E. Kim, S. Kim, "A soft computing approach to localization in wireless sensor networks," Expert Systems with Applications, vol. 36, pp. 7552-7561, 2009.
    [18] 卓尚澤, "室內定位技術簡介," 元智大學老人福祉科技研究中心2009.
    [19] ITRI, http://www.itri.org.tw/
    [20] 陳柏維, "Wiimote 紅外線室內定位技術與運動控制應用於機器建築與智慧生活之研究," 國立成功大學奈米科技暨微系統工程系碩士論文, 2010.
    [21] Roomba機器人, http://www.roombavac.com/buyroomba/defaultB.asp
    [22] J. Aranda, A. Grau, and J. Climent, "Control architecture for a three-wheeled roller robot, " AMC’98-Coimbra. 5th International Workshop on Advanced Motion Control, pp. 518-523, July 1998.
    [23] 吳建中, 莊杉良,"智慧生活空間系統可監控居家環境的機器人," Conference on Information Technology and Applications in Outlying Islands, 2009.
    [24] D. Maeda, K. Mizugaki, R. Fujiwara, T. Nakagawa, M. Miyazaki, K. Suzuki, K. Yano,"Tagless location system using UWB impulse radio," in Radio and Wireless Symposium, 2009. RWS '09. IEEE, pp. 671-674, 2009.
    [25] S. Lee, K. N. Ha, and K. C. Lee, "A pyroelectric infrared sensor-based indoor location-aware system for the smart home", IEEE Transactions on Consumer Electronics, Vol. 52, pp. 1311-1317, 2006.
    [26] HaGi Sonic Co., Ltd., http://hagisonic.com/
    [27] 郭嘉賓, "設計室內分區與Wiimote定位技術之吸塵器機器人," 元智大學資訊工程系碩士論文, 2008.
    [28] B. Tas, N. Altiparmak, and A. S. Tosun, "Low cost indoor location management system using infrared leds and Wii Remote Controller," Performance Computing and Communications Conference (IPCCC), IEEE, pp. 280-288, 2009.
    [29] WiiBrew, http://wiibrew.org/wiki/Wiimote/
    [30] Wii Remote Technology, http://money.cnn.com/magazines/fortune/storysupplement/wiiremote/index.htm
    [31] 林傑斌, et al., LabVIEW從入門到精通: 文魁資訊, 2008.
    [32] Omni wheel, http://en.wikipedia.org/wiki/Omni_wheel
    [33] K. S. Byun, S. J. Kim, J. B. Song,"Design of a four-wheeled omnidirectional mobile robot with variable wheel arrangement mechanism, " Proceedings of the 2002 IEEE International Conference on Robotics & Automation, pp. 720-725, May 2002.
    [34] T. Isoda, P. Chen; T. Toyota, and T. Hirano, "Omni-directional mobile robot for autonomic offroad running,” 6th IEEE International Workshop on Robot and Human Communication, pp. 64-69, 1997.
    [35] J. H. Lee, B. K. Kim, T. Tanikawa, K. Ohba, "Command system and motion control for caster-type omni-directional mobile robot," Intelligent Robots and Systems, pp. 232-237, 2005.
    [36] K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, T. Fukuda, "Feedback control of an omnidirectional autonomous platform for mobile service robots," Journal of Intelligent and Robotic Systems, Vol. 22, pp. 315-330, 1998.
    [37] I. E. Paromtchik, H. Asama, T. Fujii, I. Endo, "A control system for an omnidirectional mobile robot," Proceedings of the 1999 IEEE International Conference on Control Applications, pp. 1123-1128, 1999.
    [38] R. L. Williams, B. E. Carter, P. Gallina, G. Rosati, "Dynamic model with slip for wheeled omnidirectional robots, " IEEE Transactions on Robotics and Automation, Vol. 18, pp. 285-293, June 2002.
    [39] Y.P. Leow, K. H. Low, and W. K. Loh, "Kinematic modeling and analysis of mobile robots with omni-directional wheels," Seventh lnternational Conference on Control, Automation, Robotics And Vision (lCARCV’O2), pp. 820-825, 2002.
    [40] Y. Liu, J. J. Zhu, R. L. Williams, J. Wu, "Omni-directional mobile robot controller design by trajectory linearization," Robotics and Autonomous Systems 56, pp. 461–479, 2008.
    [41] J. A. Vazquez, M. Velasco-Villa, "Computed-torque control of an omnidirectional mobile robot," International Conference on Electrical and Electronics Engineering, pp. 274-277, 2007.
    [42] 翁義清, "全向移動機器人之路徑追蹤," 國立成功大學工程科學系碩士論文, 2007.
    [43] U. H. Chi, "Formal specification of user interfaces: a comparison and evaluation of four axiomatic approaches," IEEE Transactions on Software Engineering, pp, 671-685. 1985.
    [44] N. Andrienko, G. Andrienko, H. Voss, F. Bernardo, J. Hipolito, U. Kretchmer, "Testing the usability of interactive maps in commonGIS," Cartography and Geographic Information Science, pp, 325-342. 2002.
    [45] Shneiderman & Plaisant, "人機介面設計-有效的人機互動策略," (曾志軒譯), 東華出版社2005.
    [46] M. Masoudi, S. Ahmadi, M. H. Korayem, "Guidance quality and remote control of 6'R robot by user interface, robot interface and its simulator," Second International Conference on Computer and Electrical Engineering, pp. 284-288, 2009.
    [47] J. H. Park, K. O. Kim, and J. W. Jeon, "PDA based user interface management system for remote control robots," SICE-ICASE International Joint Conference, pp. 417-420, 2006.
    [48] Y. Wakita, N. Yamanobe, K. Nagata, N. Ando, M. Clerc, "Development of user interface with single switch scanning for robot arm to help disabled people using rt-middleware," 10th Intl. Conf. on Control, Automation, Robotics and Vision, pp, 1515-1520, 2008.
    [49] H. Ishii, B. Ullmer, "Tangible Bits: Towards seamless interfaces between people, bits and atoms," in Proceedings of CHI‘97, ACM Press, pp. 234-241, 1997.
    [50] 莊峰輔, "卡爾曼濾波應用於空載GPS/INS測量數據求定重力場之研究," 國立成功大學測量及空間資訊系碩士論文, 2004.
    [51] Optical mouse,
    http://en.wikipedia.org/wiki/Optical_mouse/
    [52] High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs, Vishay Intertechnology Inc., http://www.vishay.com/
    [53] L. F. Wang, K. C. Tan, and V. Prahlad, "Developing khepera robot applications in a webots environment," Proceedings of the International Symposium on Human Micromechatronics and Human Science, pp 71-76, 2000.
    [54] T. C. Lee, C. H. Lee, and C. C. Teng, "Adaptive tracking control of nonholonomic mobile robots by computed torque,” Proceedings of the 38th Conference on Decision & Control, pp. 1254-1259, 1999.
    [55] Parallax Inc., http://www.parallax.com/
    [56] Microchip Technology Inc., http://www.microchip.com/
    [57] Shayang Ye Inc., http://www.shayye.com.tw/
    [58] Kornylak Inc., http://store.kornylak.com/
    [59] National Instruments Inc., http://www.ni.com/
    [60] Sony Philippines, Inc., http://www.sony.com.ph/
    [61] 蕭天賜, "以數位訊號處理器為基礎之多功能控制平台的研製," 國立成功大學工程科學系碩士論文, 2006.
    [62] Autoregressive moving average model,
    http://en.wikipedia.org/wiki/Autoregressive_moving_average_model

    下載圖示 校內:2014-08-17公開
    校外:2014-08-17公開
    QR CODE