簡易檢索 / 詳目顯示

研究生: 楊侑叡
Yang, Yu-Jui
論文名稱: 3.5 GHz 微波功率放大器之設計製作
The Design of 3.5 GHz Microwave Power Amplifier
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 109
中文關鍵詞: 功率放大器
外文關鍵詞: power amplifier
相關次數: 點閱:59下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製應用於3.5 GHz 頻帶無線區域網路(WLAN)並使用雙電源偏壓之PHEMT 微波功率放大器。
    在本論文中,我們探討了各項設計微波功率放大器所需的基本理論,
    以及電路的相關設計方法。依照系統的需求,我們訂定了功率放大器的設
    計目標為: 3.4 ~ 3.6 GHz 的應用頻段、40 dB 的小信號增益、37 dBm 的1
    dB 增益壓縮點輸出功率、25 % 的功率效率以及39 dBm 的三階截斷點
    輸出功率;其中,選擇的偏壓點是屬於A 類操作的10 Volt – 2000 mA。此外,
    本放大器是採用全訊科技公司(Transcom, Inc.)的砷化鎵PHEMT 製程而完成製作。
    在輸出功率匹配方面,我們選擇了使用負載線理論方法(Cripps
    Method)以及電晶體的小信號模型去完成輸出匹配電路的設計;在偏壓電
    路,我們選擇雙偏壓電源結構。在量測方面,使用FR-4 的測試基板來進行
    特性的量測。最後,我們比較了量測結果、模擬結果以及設計規格。
    本論文所製作的微波功率放大器,確實能使用在3.5 GHz 頻帶的無線區域網路的應用之中。

    In this thesis, it is purposed that a 3.5 GHz PHEMT microwave power
    amplifier with dual dc supply for the wireless LAN applications.
    In this thesis, we discuss about basic theories in microwave circuit
    design and circuit design techniques. To meet the requirements of the system,
    we specify the power amplifier as follows: frequency range of 3.4 ~ 3.6 GHz,
    small signal gain of 40 dB, output power at 1 dB gain compress point of 37
    dBm, power efficiency of 25 %, and output IP3 of 39 dBm. In addition, we
    select the quiescent point of 10 Volt – 2000 mA in class A operation.
    Furthermore, the chip is fabricated in Transcom, Inc. GaAs PHEMT process.
    From the aspect of output power matching, we perform the output
    matching network using the load line theory (Cripps Nethod) and the
    small-signal model of PHEMT. We select dual-bias configuration to
    implement dc supply circuit. In addition, we use FR-4 evaluation board to
    measure the performance of PA. Finally, we compare the discrepancies
    between the measured and simulated results and the specifications.
    The microwave power amplifier really presents well matched with the
    requirements for 3.5 GHz wireless LAN applications.

    ABSTRACT ACKNOWLEDFEMENTS TABLE CAPTION FIGURE CAPTION Chapter 1 Introduction………………………………………………………...1 1.1 Broadband Wireless Communications…………………………2 1.2 Research Motivation………………………………………….2 1.3 Thesis Organization…………………………………………….3 Chapter 2 Basic Theory of Microwave Networks…………………………….6 2.1 Scattering Parameters…………………………………………..6 2.1.1 Introduction………………………………………………6 2.1.2 Definition…………………………………………………6 2.2 Reflection Coefficient and Stability Consideration…………….8 2.2.1 Definition of Reflection Coefficients…………………….8 2.2.2 Stability Consideration…………………………………...9 2.3 Power Gain………………………………….………………...12 2.3.1 Transducer Power Gain……………….………………...13 2.3.2 Available Power Gain……………….……………….….14 2.3.3 Operating Power Gain……………….………………….15 2.3.4 The Maximum Power Gain…………….……………….16 2.4 Noise Figure…………….…………………………………….17 2.4.1 Sources and Basic Properties of Electrical Noise………17 2.4.2 Definition of Noise Figure……………………………18 Chapter 3 Principles of Power Amplifier Design……………………………26 3.1 Classification of Power Amplifiers…………………………...26 3.1.1 Class A Power Amplifier………………………….…….26 3.1.2 Class B Power Amplifier………………………….…….27 3.1.3 Class C Power Amplifier………………………….…….27 3.1.4 Class AB Power Amplifier..………………………….…27 3.1.5 Class D and E Power Amplifiers..………………………28 3.2 Efficiency.……………………………………………………28 3.3 Linearity Consideration………………………………………29 3.3.1 Dynamic Range…………………………………………29 3.3.2 1 dB Compression Point…………………………….30 3.3.3 Harmonics Distortion…………………………………31 3.3.4 Intermodulation Distortion……………………………31 3.4 DC Bias Networks…………………………………………….33 3.5 Power Matching Techniques………………………………….34 3.5.1 Load-pull Measurement Systems…………………………34 3.5.1.1 Introduction to Load-Pull Measurements………..34 3.5.1.2 Commercial Load-Pull Equipment……………….35 3.5.2 Nonlinear Model……………………………………………….36 3.5.3 Load Line Theory……………………………………….36 3.6 Summary……………………………………………………38 Chapter 4 3.4 ~ 3.6 GHz 37 dBm Power Amplifier Design…………………49 4.1 Overview...……………………………………………….……49 4.2 Specification…………………………………………………………...49 4.3 Characteristics of GaAs-Based Transistor………………….…….50 4.2.1 The Development of GaAs FET………………….……..50 4.2.2 Basic Device Physics of PHEMTs…………….……………51 4.4 Output Stage Design………………….………….……………53 4.4.1 Size Selection of Transistor…….………….……………53 4.4.2 Quiescent Point and DC Bias Network...….……………54 4.4.3 Calculation of Ropt…….………….…………………..…54 4.4.4 Setting up Device Model.………….……………………55 4.4.5 Calculation of Stability Factor……….………………….59 4.4.6 Power Matching…………….……….………………….59 4.4.6 Input Matching...….……….……………………………61 4.4.7 Simulation with MLIN Matching Networks……………62 4.4.8 Analysis for Output Power...……………………………63 4.5 Driver Stage Design..…………………………………………64 4.6 Overall Two-stage Power Amplifier…………………………..64 Chapter 5 Measurement and Analysis…………...…………………………..92 5.1 Measurement Equipment…………...…………………………92 5.1.1 Gain and Return Loss Measurement……………………92 5.1.2 Output Power Measurement……….……………………92 5.1.3 Third Order Intermodulation Measurement.……………92 5.2 Measured Results………………………………..……………93 5.3 Analysis………...………………………………..……………94 Chapter 6 Conclusion...………...………………………………..…………106 Reference...………...………………………………..……………………...107

    [1] Jiangzhou Wang, “Broadband Wireless Communications: 3G, 4G and
    Wireless LAN”, Kluwer Academic Publish, 2001.
    [2] Lawrence E. Larson, “RF And Microwave Circuit Design For Wireless
    Communications”, Artech House, Inc, 1996.
    [3] George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde, “Microwave
    Circuit Design Using Linear and Nonlinear Techniques”, John Wilely &
    Sons, Inc., 1990.
    [4] Guillermo Gonzalez, “Microwave Transistor Amplifiers Analysis and
    Design”, Prentice Hall, Inc., New Jersey, 1996.
    [5] D.A. Bell, “Noise and the Solid State”, Pentech, London, 1985.
    [6] J.L.B Walker, “High-power GaAs FET Amplifiers”, Norwood, MA:
    Artech House, 1993.
    [7] Robert E. Watson, “Receiver Dynamic Range”, Tech-notes, Vol. 14 No. 1,
    1987.
    [8] Kotzebue, K., et al., “An 18 to 26.5 GHz Load-Pull System Using Active
    Load-Tuning”, Proc. IEEE Intl. Microw Symp., MTT-S, 1987.
    [9] Huges, B., et al., “Accurate On-Waver Power and Harmonic
    Measurements of Microwave Amplifiers and Devices”, Proc. IEEE Intl.
    Microw Symp., 1992.
    [10] ATN Microwave, “A Load Pull System With Harmonic Tuning”,
    Microwave Journal, 1996.
    [11] Steve C. Cripps, “RF Power Amplifiers for Wireless Communications”,
    Artech House, Inc., 1999.
    [12] B. Shi, L. Sundstorm, “Chip for linearisation of RF power amplifiers
    using power feedback”, Electronics Letters, vol.34, pp.2117 ~ 2119,
    October 1998.
    [13] J. Yi, Y. Yang, M. Park, W. Kang, B. Kim, “Analog predistortion
    linearizer for high-power RF amplifiers”, IEEE Trans. Microwave
    Theory and Techniques, vol.48, pp. 2709 ~ 2713, Dec.2000.
    [14] M. Hayashi, M. Nakatsugawa and M. Muraguchi, “Quasi-linear
    amplification using self phase distortion compensation technique”, IEEE
    Trans. Microwave Theory and Techniques, vol.43, no.11, pp. 2557 ~
    2564, November 1995.
    [15] S.G.Kang, I.K.Lee, K.S.Yoo, “Analysis and design of feeddorward power
    amplifier”, Microwave Symposium Digest, vol.3, pp. 1519 ~ 1522, 1997.
    [16] Fazal Ali et al., “Microwave and Millimeter-wave Heterostructure
    Transistors and Their Applications”, pp. 25 ~ 33, Artech House,1989
    [17] William Liu, “Fundamentals of III-V Devices”, John Wiely & Sons Inc.,
    1999.
    [18] H.J. Siweris, A. Werthof, H. Tischer, and U. Schaper, “Low-cost GaAs
    PHEMT MMIC’s for millimeter-wave sensor applications”, IEEE Trans.
    Microwave Theory and Techniques, vol.46, pp. 2560 ~ 2567, December
    1998.
    [19] A. Bessemoulin, H. Massler, A. Hulsmann, and M. Schlechtweg,
    “Ka-band high-power and driver MMIC amplifier using GaAs PHEMTs
    and coplanar waveguides”, IEEE Microwave and Guided Wave Letters,
    vol.10, pp.534 ~ 536, Dec.2000.
    [20] J. Michael Golio, “Microwave MESFETs and HEMTs”, Artech
    House,1991.
    [21] A. Ketterson, Moloney, W. T. Messelink, J. Klem, R. Fischer, W. Kopp,
    and H. Morkoc, IEEE Electron Device Lett., vol. EDL-6, 628 (1985).
    [22] J. Rosenburg, M. Benlamri, P. Kitchner, J. Woodal, and G. Pettit, IEEE
    Electron Device Lett., vol. EDL-6, 491 (1985).
    [23] D.V. Lang, R. A. Logan, and M. Jaros, Phys. Rev.B, vol.19, 1015 (1979).
    [24] R. Fischer, T. J. Dremmond, J. Klem, T. Henderson, D. Perachone, and H.
    Morkoc, Electron Device, vol. ED-31, 1028 (1984).
    [25] T. Henderson, M. I. Aksun, IEEE Electron Device Lett., vol. EDL-7, 649
    (1986).
    [26] S. M. J. Liu, M. B. Das, IEEE Irons. Electron Devices, vol. ED-33, 576
    (1986).
    [27] Kyounghoon Yang, Member, IEEE, George I. Haddad, Life Fellow,
    IEEE, and Jack R. East, Member, IEEE, “High-Efficiency Class-A
    Power Amplifiers with a Dual-Bias-Control Scheme”, EEE Trans.
    Microwave Theory and Techniques, vol. 47, no. 8, August 1999.
    [28] Gilles Dambrine, Alain Cappy, Frederic Heliodore, Edouard Playez, “A
    New Method for Determining the FET Small-Signal Equivalent Circuit”,
    EEE Trans. Microwave Theory and Techniques, vol. 36, no. 7, July
    1988.
    [29] K. W. Lee, K. Lee, M. S. Shur, Tho T. Vu, P. C. T. Roberts, M. J. Helix,
    “Source, drain, and gate series resistances and electron saturation
    velocity in ion implanted GaAs FET’s”, IEEE Trans Electron Device,
    vol. ED-32, pp. 987 ~ 992, May 1985.
    [31] George L. Matthaei, Leo Young, E. M. T. Jones, “Microwave Filters,
    Impedance-Matching Networks, AND Coupling Structures”, Artech
    House,1980.
    [32] S.R. Pennock & P.R. Shepherd, “Microwave Engineering with Wireless
    Applications”, Mcgrow-Hill,1998.

    下載圖示 校內:2004-07-11公開
    校外:2004-07-11公開
    QR CODE