| 研究生: |
陳家榮 Chen, chia-Jung |
|---|---|
| 論文名稱: |
慣性感測元件校正方法應用於導航模組之研究 A Calibration Method for MEMS Inertial Sensor Module and Its Application to Navigation System |
| 指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 校正 、慣性感測元件 |
| 外文關鍵詞: | Calibration, Inertial Sensing Module, MEMS |
| 相關次數: | 點閱:109 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著微機電(MEMS)製程技術的日益發展,微型慣性感測元件擁有體積小、製造成本低以及低耗電性等優點。然而就快速且可靠的定位系統(positioning system)的需求而言,目前MEMS慣性感測元件仍存有訊號飄移的問題,以至於單獨應用於導航定位方面的準確度仍嫌不足。因此本文主要著重於MEMS慣性感測元件的前置校正,探討造成感測元件訊號飄移的成因,並藉由不同的校正方法如線性度校正、小波訊號處理等進一步降低誤差量隨著積分而逐漸放大的現象,以利於在無法有效接收外界參考訊號的情形下透過MEMS慣性感測元件也能達到定位或是導航等目標,最後由軌跡實測的結果顯示慣性感測模組經由校正後能達成較佳的定位效果,其整體平均誤差量約可縮小至5到10cm左右。
This thesis presents a calibration method for MEMS inertial sensing module to improve its noise problem. With the rapid development of MEMS technology, MEMS inertial sensing module including accelerometer and gyroscope possess some advantages such as small size, low cost and low power consumption. However, the inertial sensing elements are difficult to be implemented a precision positioning system in the presence of various errors. Based on the situation depicted above, a calibration method is investigated in this study. First of all, the sources of error are considered comprehensively. In general, those errors can be generalized into two groups, deterministic and stochastic. The former usually comprises bias error, misalignment and nonlinearity; the latter mainly contains thermal noise and mass residual motion noise. Thus, the calibration method integrated of linearity calibration and wavelet analysis is utilized to enhance the accuracy of MEMS inertial sensing module. The experimental results show that the mean error is about 5~10cm in various trajectory testing and the performance of inertial sensing module can be improved by means of proposed calibration method.
【1】http://www.invensence.com
【2】P.H. Miline, Underwater Acoustic Positioning Systems, Gulf Pub.Co., 1983.
【3】http://www.tkt.cs.tut.fi/kurssit/9628/Intro.pdf
【4】http://www.garmin.com.tw
【5】J. Farrell and M. Barth, The Global Positioning System And Inertial Navigation, McGraw-Hill, 1999.
【6】K.R. Britting, Inertial Navigation System Analysis, John Wiley & Sons, 1971.
【7】D.H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, IET, 1997.
【8】M.S. Grewal, L.R. Weill, and A.P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, John Wiley & Sons, 2001.
【9】張祥傑,慣性導航系統,先進微系統與構裝技術聯盟季刊,先進微系統與構裝技術聯盟,第31期,第64-72頁,2008。
【10】X. Yun, E. R. Bachmann, R. B. McGhee, R. H. Whalen, R. L. Roberts, R. G. Knapp, A. J. Healey and M. J. Zyda, “Testing and Evaluation of an Integrated GPS/INS System for Small AUV Navigation,” IEEE Journal of Oceanic Engineering, vol. 24, pp. 396-404, 1999.
【11】J. Zhou and H. Bolandhemmat, “Integrated INS/GPS System for an Autonomous Mobile Vehicle,” in Proc. IEEE International Conference on Mechatronics and Automation, pp. 694-699, 2007.
【12】Z. J. Huang and J. C. Fang, “Integration of MEMS Inertial Sensor-Based GNC of a UAV,” International Journal of Information Technology, vol. 11, pp. 123-132, 2005.
【13】C. Hu, W. Chen, Y. Chen and D. Liu, “Adaptive Kalman Filtering for Vehicle Navigation,” Journal of Global Positioning Systems, vol. 2, pp. 42-47, 2003.
【14】W. Abdel-Hamid, T. Abdelazim, N. El-Sheimy and G.Lachapelle, “mprovement of MEMS-IMU/GPS performance using fuzzy modeling,” GPS Solutions, vol. 10, pp. 1-11, 2006.
【15】J. Gaysse, “A low cost absolute 2D position calculation system,” SICE-ICASE International Joint Conference, pp. 5658-5661, 2006.
【16】J.J. Wang, J. Wang, D.Sinclair and L. Watts, “A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration,” International Symposium on GPS/GNSS, 2006.
【17】S. H. Shin, C. G. Park, J. W. Kim, H. S. Hong and J. M. Lee, “Adaptive Step Length Estimation Algorithm Using Low-Cost MEMS Inertial Sensors,” IEEE Sensors Applications Symposium, pp. 1-5, 2007.
【18】A. D. Cheok, K.G. Kumar and S. Prince, “Micro-Accelerometer based Hardware Interfaces for Wearable Computer Mixed Reality Applications,” in Proc. the 6th International Symposium on Wearable Computers, pp. 223-230, 2002.
【19】G. Zhang, G. Shi, Y. Luo, H. Wong, Wen J. Li, Philip H. W. Leong and M. Y. Wong, “Towards an Ubiquitous Wireless Digital Writing Instrument Using MEMS Motion Sensing Technology,” in Proc. International Conference on Advanced Intelligent Mechatronics, pp. 795-800, 2005.
【20】G. Pang and H. Liu, “Evaluation of a Low-cost MEMS Accelerometer for Distance Measurement,” Journal of Intelligent and Robotic Systems, vol. 30, pp. 294-265, 2001.
【21】F. Mohd-Yasin, C. E. Korman and D. J. Nagel, “Measurement of noise characteristics of MEMS accelerometers,” Solid-State Electronics, vol. 47, pp. 357-360, 2003.
【22】V. Skvortzov, Y. C. Cho, B. L. Lee and C. Song, “Development of a Gyro Test System at Samsung Advanced Institute of Technology,” Position Location and Navigation Symposium, pp. 133-142, 2004.
【23】G. Liu, A. Wang, T. Jiang, J. Jiao and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsystem Technologies, vol. 14, pp. 199-204, 2008.
【24】P. Aggarwal, Z. Syed and N. El-Sheimy, “Thermal Calibration of Low Cost MEMS Sensors for Land Vehicle Navigation System,” in Proc. IEEE Vehicular Technology Conference, pp. 2859-2863, 2008.
【25】A. El-Rabbany and M. El-Diasty, “An Efficient Neural Network Model for De-noising of MEMS-Based Inertial Data,” The Journal of Navigation, vol. 57, pp. 407-415, 2004.
【26】N. Yazdi, F. Ayazi and K. Najafi, “Micromachined Inertial Sensors,” in Proc. The IEEE, vol. 86, pp. 1640-1659, 1998.
【27】C. Yeh and K. Najafi, “CMOS Interface Circuitry for a Low-Voltage Micromachined Tunneling Accelerometer,” Journal of Microelectromechanical Systems, vol. 7, pp. 6-15, 1998.
【28】A. Selvakumar, “A multifunctional silicon micromachining technology for high performance microsensors and microactuators,” Ph.D. dissertation, University of Michigan, Ann Arbor, 1997.
【29】K. Y. Park, C. W. Lee, Y. S. Oh, and Y. H. Cho, “Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape springs,” in Proc. Micro Electro Mechanical Systems, pp.494-499, 1997.
【30】Z. Djuric, “Mechanisms of noise sources in microelectromechanical systems,” Microelectronics Reliability, vol. 40, pp. 919-932, 2000.
【31】S. Lee, G. J. Nam, J. Chae, H. Kim and A.J. Drake, “Two-Dimensional Position Detection System With MEMS Accelerometers, Readout Circuitry, and Microprocessor for Padless Mouse Applications,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 13, pp. 1167-1178, 2005.
【32】O. Nelles, Nonlinear system identification: from classical approaches to neural networks and fuzzy models, Springer, 2001.
【33】R. M. Rao and A.S. Bopardikar, Wavelet Transforms: Introduction to Theory and Applications, Addison-Wesley, 1998.
【34】B. Vidakovic, Statistical Modeling by Wavelets, Wiley, 1999.
【35】I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
【36】M. Misiti, Y. Misiti, G. Oppenheim and J.M. Poggi, “Wavelet Toolbox User’s Guide,” The Math Works, Inc., 2008.
【37】D.L. Donoho, “De-Noising by Soft-Thresholding,” Information
Theory, IEEE Transactions on, vol. 41, pp. 613-627, 1995.
【38】S. W. Smith, The Scientist and Engineer’ Guide to Digital signal processing, California Technical Pub., 1999.
【39】G. Welch and G. Bishop, An Introduction to the Kalman Filter, UNC-Chapel Hill, 2002.