研究生: |
沈育仁 Shen, Yu-Jen |
---|---|
論文名稱: |
CdS量子點敏化劑及高分子/奈米粒子複合膠態電解質在染料敏化太陽能電池應用之研究 Applications of CdS Quantum-Dot Sensitizer and Hybrid Polymer/Nanoparticle Gel-State Electrolyte on Dye-Sensitized Solar Cells |
指導教授: |
李玉郎
Lee, Yuh-Lang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 194 |
中文關鍵詞: | 奈米碳管 、表面改質 、CdS 、LB 沈積技術 、PVDF-HFP 、石墨 、染料敏化太陽電池 、量子點 |
外文關鍵詞: | Dye-Sensitized Solar Cell, CdS, Quantum dot, surface modification, Langmuir-Blodgett technique, graphite and carbon nanotube |
相關次數: | 點閱:97 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以微乳化系統合成CdS量子點,並利用十二碳硫醇(dodecanethiol)及琥珀酸硫醇(Mercaptosuccinic acid,MSA)分子進行量子點表面改質,分別製作疏水性量子點粒子(C12-CdS)與含羧酸基的親水性量子點(MSA-CdS),其中利用CTAB物理吸附於MSA-CdS可提高量子點的移動性,可利用LB沈積技術精確控制層數來製備多層的CdS量子點薄膜。此外,在TiO2組裝CdS量子點的太陽電池研究中,利用3-硫醇基矽丙烷(3-Mercaptopropyl trimethoxysilane,MPTMS)及3-胺基甲基二乙氧基矽丙烷(3-Aminopropylmethyl diethoxysilane,APMDS)對TiO2表面改質使TiO2具有硫醇基(-SH)與胺基(-NH2),可與CdS反應提高CdS 量子點的吸附量,但易造成TiO2電極孔洞阻塞。而利用MSA-CdS直接利用羧基在未改質TiO2表面吸附形成單層且高覆蓋率結構,可避免阻塞TiO¬2孔洞與抑制暗電流發生。由IPCE效率分析顯示,於400nm光波長下以MSA-CdS直接吸附於未改質TiO2效率約20 %,而MPTMS與APMDS改質的TiO2吸附CdS則分別為13%及6%。在光電轉換總效率分析上MSA-CdS吸附於未改質TiO2效率可達0.30%,而CdS吸附於MPTMS與APMDS改質的TiO2¬則約為0.19%
另一方面,本研究亦利用PVDF-HFP高分子分別混摻TiO2、奈米碳管及石墨等無機奈米粒子製作膠態電解質,並組裝應用於太陽電池中,探討無機奈米粒子對電池轉換效率影響。實驗結果發現奈米粒子可降低高分子結晶度與減低離子移動活化能而提升導電度。由電化學阻抗分析發現,高分子混摻TiO2可改善膠態電解質與TiO2電極間的接著,但亦會導致白金電極界面電荷轉移電阻增加與漏電情形發生,而混摻奈米碳管與石墨粒子可抑制電子與電洞再結合發生,可提升光電流。在太陽電池光電轉效率分析中,PVDF-HFP未添加奈米粒子製備之電解質所測得的電池效率約為4.69%,而PVDF-HFP混摻0.5% TiO2奈米粒子效率可提升至5.19%;而混摻0.3%奈米碳管時為5.92%;而混摻0.2%石墨奈米粒子可將效率提升至6.04%,接近液態太陽電池的效率值。
In this study, Cadmium sulfide (CdS) quantum dots (QDs) were prepared by microemulsion process and surface modified by dodecanethiol or mercaptosuccinic acid (MSA) to render a surface with hydrophobic alkyl chains (C12-CdS) or hydrophilic carboxylic acid groups (MSA-CdS), respectively. For the MSA-CdS QDs, the surface was hydrophobized through physical adsorption of cetyltrimethyl ammonium bromide (CTAB) which improved the stability and mobility of the QDs at the air/water interface. The CTAB-MSA-CdS QDs could be used to prepare multilayer of CdS QD films using Langmuir-Blodgett (LB) technique. Moreover, the CdS was assembled onto TiO2 mesoporous surface for dye-sensitized solar cells (DSSCs) application. TiO2 was surface modified by 3-mercaptopropyl trimethoxysilane (MPTMS) or 3-aminopropyl-methyl diethoxysilane (APMDS), respectively, to prepare a thiol or amino terminated surface for binding with the CdS. The interaction of CdS to the thiol and amino groups leads to a higher adsorption amount of CdS. However, the fast adsorption rate leads to blocking of mesopores, resulting a poor performance of the cell. On the bare TiO2 film, CdS QDs have a lower adsorption rate and incorporated amount of CdS were obtained, but a better-covered QDs monolayer was resulted. The incident photon-to-current conversion efficiency (IPCE) obtained at 400 nm for the CdS-sensitized TiO2 electrode were about 20%, 13% and 6%for the bare-TiO2, MPTMS-TiO2 and APMDS-TiO2, respectively. The total energy conversion efficiency were 0.30% for bare TiO2, 0.19% for MPTMS-TiO2 and APMDS-TiO2.
On the other hand, the PVDF-HFP was blending with nanofillers (TiO2, carbon nanotube and graphite) to prepare polymer gel electrolyte (PGE) for DSSC application. Graphite nanoparticle was proved to be a more efficiency filler, than TiO2 and carbon nanotube, in enhancing the charge conductivity of the PGE, decreasing the activation energy for charge transport, and inhibit the charge recombination at the TiO2/electrolyte interface. The energy conversion efficiency of a DSSC fabricated using a PGE containing 0.25 wt% of graphite can be increased from 4.69% (without filler) to 6.04%, close to that of a liquid system obtained in this work.
1. M. Grätzel, “Powering the Planet,” Nature, 403, 363 (2000).
2. 張品全, “太陽電池”, 科學發展月刊, 349, 23 (2002).
3. B. O’Regan and M. Grätzel, “A Low-Cost, High Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature, 353, 737 (1991).
4. Winfried Hoffmann, Towards an Effective European Industrial Policy for PV Solar Electricity, Paris France, 19th EPVSEC, June (2004).
5. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” J. Phys. Chem. 95, 525 (1991).
6. R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, “Size Effects in the Excited Electronic States of Small Colloidal CdS Crystallites,” J. Chem. Phys., 80, 4464 (1983).
7. A. J. Nozik, “Quantum Dot Solar Cells,” Physica E., 14, 115 (2002).
8. W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers,” Angew. Chem. Int. Ed., 41, 2368 (2002).
9. W. W. Yu, L. Qu, W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater. 15, 2854 (2003).
10. L. Spanhel, M. Hasse, H. Weller and A. Henglein, “Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles,” A., J. Am. Chem. Soc., 109, 5649 (1987).
11. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion,” Inorganic Chemistry, 44, 6893 (2005).
12. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys., 32, 510 (1961).
13. C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev., 105, 1025 (2005).
14. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals,” J. Phys. Chem. B, 103, 3065 (1999).
15. M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution,” Adv. Mater., 15, 1844 (2003).
16. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature,” J. Colloid Interface Sci., 252, 77 (2002).
17. J. M. Nedeljkovic, O. I. Micic, S. P. Ahrenkiel, A. Miedaner and A. J. Nozik, “Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions: Synthesis of InP Quantum Rods and InP-TiO2 Composites,” J. Am. Chem. Soc., 126, 2632 (2004).
18. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, “Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals,” Nature Materials, 2, 382, (2003).
19. K. W. Jun, P. K. Khannaa, K. B. Honga, J. O. Baeg and Y. D. Suha, “Synthesis of InP Nanocrystals from Indium Chloride and Sodium Phosphide by Solution Route,” Materials Chemistry and Physics, 96, 494 (2006).
20. M. R. Greenberg, W. Chen, B. N. Pulford, G. A. Smolyakov, Y. B. Jiang, S. D. Bunge, T. J. Boyle and Marek Osiński, “Synthesis and Characterization of InP and InN Colloidal Quantum Dots,” Proc. of SPIE, 5705, 68 (2005).
21. J. Rockenberger, L. Tröger, A. Kornowski, T. Vossmeyer, A. Eychmüller, J. Feldhaus and W. Weller, “EXAFS Studies on the Size Dependence of Structural and Dynamic Properties of CdS Nanoparticles,” J. Phys. Chem. B, 101, 2691 (1997).
22. K. Murakoshi, H. Hosokawa, M. Saito, Y. Wada and S. Yanagida, “Control of Surface Coverage and Solubility of Thiophenolate- Capped CdS Nanocrystallites,” J. Colloid Interface Sci., 203, 225, (1998).
23. D. Diaz, M. Rivera, T. Ni, J. C. Rodriguez, S.-E. Castillo-Blum, D. Nagesha, J. Robles, O. J. Alvarez-Fregoso and N. A. Kotov, “Conformation of Ethylhexanoate Stabilizer on the Surface of CdS Nanoparticles,” J. Phys. Chem. B, 103, 9854 (1999).
24. C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” J. Am. Chem. Soc., 115, 8706 (1993).
25. B. A. Harruff and C. E. Bunker, “Spectral Properties of AOT- protected CdS Nanaparticles: Quantum Yield Enhancement by Photolysis,” Langmuir, 19, 893 (2003).
26. R. B. Khomane, A. Manna, A. B. Mandale and B. D. Kulkarni, “Synthesis and Characterization of Dodecanethiol-Capped Cadmium Sulfide Nanoparticles in a Winsor II Microemulsion of DiethylEther/AOT/Water,” Langmuir 18, 8237 (2003).
27. Y. Mastai and G. Hodes, “Size Quantization in Electrodeposited CdTe Nanocrystalline Films,” J. Phys. Chem. B, 101, 2685 (1997).
28. M. A. Anderson, S. Gorer and R. M. Penner, “A Hybrid Electrochemical/Chemical Synthesis of Supported, Luminescent Cadmium Sulfide Nanocrystals,” J. Phys. Chem. B, 101, 5895 (1997)
29. G. S. Hsiao, M. G. Anderson, S. Gorner, D. Harris and R. M. Penner, “Hybrid Electrochemical/Chemical Synthesis of Supported, Luminescent Semiconductor Nanocrystallites with Size Selectivity : Copper(I) Iodide,” J. Am. Chem. Soc., 119, 1439 (1997).
30. H. Miyake, H. Matsumoto, M. Nishizawa, T. Sakata, H. Mori, S. Kuwabata and H. Yoneyama, “Characterization of Covalently Immobilized Q-CdS Particles on Au(111) by Scanning Tunneling Microscopy and Tunneling Spectroscopy with High Reproducibility,” Langmuir, 13, 742 (1997).
31. T. Nakanishi, B. Ohtani and K. Uosaki, “Fabrication and Characterization of CdS-Nanoparticle Mono- and Multilayers on a Self-Assembled Monolayer of Alkanedithiols on Gold,” J. Phys. Chem. B, 102, 1571 (1998).
32. K. Hu, M. Brust and A. J. Bard, “Characterization and Surface Charge Measurement of Self-Assembled CdS Nanoparticle Films,” Chem. Mater., 10, 1160 (1998).
33. L. Sheeney-Haj-Ichia, J. Wasserman and I. Willner, “CdS Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation,” Adv. Mater., 14, 1323 (2002).
34. E. Granot, F. Patolsky and I. Willner, “Electrochemical Assembly of a CdS Semiconductor Nanoparticle Monolayer on Surfaces: Structural Properties and Photoelectrochemical Applications,” J. Phys. Chem. B, 108, 5875 (2004).
35. J. P. Bourgoin, C. Kergueris, E. Lefevre and S. Palacin, “Langmuir– Blodgett Films of Thiol-Capped Gold Nanoclusters: Fabrication and Electrical Properties,” Thin Solid Films, 327-329, 515 (1998).
36. S. Reculusa and S. Ravaine, “Synthesis of Colloidal Crystals of Controllable Thickness through the Langmuir-Blodgett Technique”, Chem. Mater., 15, 598 (2003).
37. W. Wang, B. Gu, L. Liang and W. Hamilton, “Fabrication of Two- and Three-Dimensional Silica Nanocolloidal Particle Arrays,” J. Phys. Chem. B, 107, 3400 (2003)
38. N. P. Kumar, S. N. Narang, S. Major, S. Vitta, S. S. Talwar, P. Dubcek, H. Amenitsch and S. Berntorff, “Structure of CdS-Arachidic Acid Composite LB Multilayers”, Colloids Surf. A, 198-200, 59 (2002).
39. I. Moriguchi, I. Tanaka, Y. Teraoka and S. Kagawa, “Production and Growth of Size-Quantized Cadmium Sulphide in the Hydrophilic Interlayer of Langmuir–Blodgett Films,” J. Chem. Soc., Chem. Commun., 1401 (1991).
40. A. Samokhvalov, R. W. Gurney, M. Lahav and R. Naaman, “Electronic Properties of Hybrid Organic/Inorganic Langmuir- Blodgett Films Containing CdS Quantum Particles,” J. Phys. Chem. B, 106, 9070 (2002).
41. I. Moriguchi, H. Nii, K. Hanai, H. Nagaoka, Y. Teraoka and S. Kagawa, “Synthesis of Size-Confined Metal Sulfides in Langmuir-Blodgett Films,” Colloids Surf. A, 103, 173 (1995).
42. D. J. Elliot, D. N. Furlong and F. Grieser, “Formation of CdS and HgS Nanoparticles in LB Films,” Colloids Surf. A, 155, 101 (1999).
43. Y. Tian, C. Wu and J. H. Fendler, “Fluorescence Activation and Surface-State Reactions of Size-Quantized Cadmium Sulfide Particles in Langmuir-Blodgett Films,” J. Phys. Chem., 98, 4913 (1994).
44. M. Takahashi, H. Natori, K. Tajima and K. Kobayashi, “Particulate Assemblies of CdS and TiO2 Prepared by Langmuir–Blodgett Technique with Octadecylamine/Methylstearate Mixed Films,” Thin Solid Films, 489, 205 (2005)
45. Y. Tian, and J. H. Fendler, “Langmuir-Blodgett Film Formation from Fluorescence-Activated, Surfactant-Capped, Size-Selected CdS Nanoparticles Spread on Water Surfaces,” Chem. Mater., 8, 969 (1996).
46. T. Toromoto, N. Tsumura, M. Miyake, M. Nishizawa, T. Sakata, H. Mori and H. Yoneyama, “Preparation and Photoelectrochemical Properties of Two-Dimensionally Organized CdS Nanoparticle Thin Films,” Langmuir, 15, 1853 (1999).
47. P. M. S. Ferreira, A. B. Timmons, M. C. Neves, P. Dynarowicz, and T. Trindade, “Langmuir–Blodgett Manipulation of Capped Cadmium Sulfide Quantum Dots,” Thin Solid Films, 389, 272 (2001).
48. A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics,” Acc. Chem. Res, 33, 269 (2000).
49. M. Grätzel, “Solar Energy Conversion by Dye-sensitized Photovoltaic Cells,” Inorg. Chem., 44, 6841 (2005)
50. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A Channel Flow Cell System Specifically Designed to Test the Effciency of Redox Shuttles in Dye Sensitized Solar Cells,” Solar Energy Materials & Solar Cells, 70, 85 (2001).
51. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy,” J. Am. Chem. Soc., 127, 3456 (2005).
52. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers(X=C1-, Br-, I-, CN- and SCN-)on Nanocrystalline TiO2 Electrodes,” J. Am. Chem. Soc., 115, 6382 (1993).
53. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte,” Chem. Commun., 2972 (2002).
54. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized Solar Cells Using Room Temperature Molten Salts and a Low Molecular Weight Gelator,” Chem. Commun., 374 (2002).
55. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “An Efficient Organogelator for Ionic Liquids to Prepare Stable Quasi-Solid State Dye-Sensitized Solar Cells,” J. Mater. Chem., 16, 2978 (2006).
56. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya, “Dye-Sensitized Zinc Oxide / Aqueous Electrolyte / Platinum Photocell,” Nature, 261, 402 (1976).
57. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” J. Am. Chem. Soc 127, 16835 (2005).
58. K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga and H. Arakawa, “Efficient Sensitization of Nanocrystalline TiO2 Films with Cyanine and Merocyanine Organic Dyes,” Solar Energy Materials & Solar Cells, 80, 47 (2003).
59. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, “Highly Efficient Photon-to-Electron Conversion with Mercurochrome-Sensitized Nanoporous Oxide Semiconductor Solar Cells,” Solar Energy Materials & Solar Cells, 64, 115 (2000).
60. T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes,” J. Am. Chem. Soc., 126, 12218 (2004).
61. R. Vogel, P. Hoyer and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors,” J. Phys. Chem., 98, 3183 (1994).
62. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots,” Langmuir, 14, 3153 (1998).
63. R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells,” J. Phys. Chem. B, 106, 7578 (2002).
64. Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles,” J. Am. Chem. Soc., 127, 7632 (2005).
65. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films,” J. Am. Chem. Soc., 128, 2385 (2006).
66. S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen and Y. M.Yang, “Quantum-Dot-Sensitized Solar Cells: Assembly of CdS Quantum-Dots Coupling Techniques of Self-Assembled Monolayer and Chemical Bath Deposition,” Appl. Phys. Lett., 90, 143517 (2007).
67. C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells,” Appl. Phys. Lett., 91, 053503 (2007).
68. J. Halme, “Dye-Sensitized Nanostructured and Organic Photovoltaic Cells : Technical Review and Preliminary Tests,” Master’s thesis of Department of Engineering Physics and Mathematics, Helsinki University of Technology (2002).
69. K. Murakoshi, R. Kogure, Y. Wada and S. Yanagida, “Fabrication of Solid-State Dye-Sensitized TiO2 Solar Cells Combined with Polypyrrole,” Solar Energy Materials & Solar Cells, 55, 113 (1998).
70. K. Tennakone, G. K. R. Senadeera, D. B. R. A. De Silva and I. R. M. Kottegoda, “Highly Stable Dye-Sensitized Solid-State Solar Cell with the Semiconductor 4CuBr•3S(C4H9)2 as the Hole Collector,” Appl. Phys. Lett., 77, 15, 2367 (2000).
71. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer and M. Grätzel, “Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photont-to-Electron Conversion Efficiencies”, Nature, 395, 583 (1998).
72. J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel and U. Bach, “High Efficiency Solid-State Photovoltaic Device due to Inhibition of Interface Charge Recombination,” Appl. Phys. Lett., 79, 2085 (2001).
73. L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida and M. Grätzel, “Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells”, Adv. Mater., 17, 7, 813 (2005).
74. A. F. Nogueira and M.-A. De Paoli, “A Dye Sensitized TiO2 Photovoltaic Cell Constructed with an Elastomeric Electrolyte,” Solar Energy Materials & Solar Cells, 61, 135 (2000).
75. M. Matsumoto, H. Miyazaki, K. Matsuhiro, Y. Kumashiro and Y. Takaoka, “A Dye Sensitized TiO2 Photoelectrochemical Cell Constructed with Polymer Solid Electrolyte,” Solid State Ionics, 89, 3-4, 263 (1996).
76. F. Cao, G. Oskam and P. C. Searson, “A Solid State, Dye Sensitized Photoelectrochemical Cell,” J. Phys. Chem., 99, 17071 (1995).
77. W. Kubo, K. Murakoshi, T. Kitamura, Y. Wada, K. Hanabusa, H. Shirai and S. Yanagida, “Fabrication of Quasi-solid-state Dye- sensitized TiO2 Solar Cells Using Low Molecular Weight Gelators,” Chemistry Letters, 27, 12, 1241 (1998).
78. W. Kubo, K. Murakoshi and T. Kitamura, “Quasi-Solid-State Dye- Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine,” J. Phys. Chem. B, 105, 12809 (2001).
79. S. Mikoshiba, 16th European Photovoltaic Solar Energy Conference, 1-5 May Glasgow UK, (2000).
80. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, “Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells,” Nano Lett., 2, 11, 1259 (2002).
81. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Grätzel, “Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells,” J. Am. Chem. Soc. (Communication), 125, 5, 1166 (2003).
82. P. Wang, S. M. Zakeeruddin and M. Grätzel, “Solidifying Liquid Electrolytes with Fluorine Polymer and Silica Nanoparticles for Quasi-Solid Dye-Sensitized Solar Cells,” Journal of Fluorine Chemistr, 125, 8, 1241 (2004).
83. H. W. Han, W. Liu, J. Zhang and X. Z. Zhao, “A Hybrid Poly(ethylene oxide) / Poly(vinylidene fluoride) / TiO2 Nanoparticle Solid-State Redox Electrolyte for Dye-Sensitized Nanocrystalline Solar Cells,” Adv. Funct. Mater., 15, 12, 1940 (2005).
84. K. M. Kim, N. G. Park, M. G. Kang, K. S. Ryu and S. H. Chang, “Effect of TiO2 Inclusion in the Poly(vinylidene fluoride-co- hexafluoropropylene) Based Polymer Electrolyte of Dye-Sensitized Solar Cell,” Bull. Korean Chem. Soc., 27, 2, 322 (2006).
85. C. Lheveder, S. Henon and J. Meunier, “Brewster angle microscope” in “Physical Chemistry of Biological Interfaces,” A. Baszkin and W. Norde Eds., Marcel Dekker, New York, Chapter 16, (2000).
86. A. Hauch and A. Georg, “Diffusion in the Electrolyte and Charge-Transfer Reaction at the Platinum Electrode in Dye-Sensitized Solar Cells”, Electrochimica Acta, 46, 22, 3457 (2001).
87. J. G. Webster, “Eelctrical Impedance Tomography”, Adam Hilger, Bristol, (1990).
88. E. Barsoukov and J. R. Macdonald, “Impedance Spectroscopy:Theory, Experiment, and Applications,” Wiley-Interscience (2005).
89. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, “Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy,” J. Phys. Chem. B, 110, 13872 (2006).
90. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo and A. Hagfeldt, “Influence of Electrolyte in Transport and Recombination in Dye-Sensitized Solar Cells Studied by Impedance Spectroscopy,” Solar Energy Materials and Solar Cells, 87, 1, 117 (2005).
91. T. Asano, T. Kubo, and Y. Nishikitani, “Electrochemical Properties of Dye-Sensitized Solar Cells Fabricated with PVDF-Type Polymeric Solid Electrolytes,” Journal of Photochemistry and Photobiology A: Chemistry, 164, 1–3, 111 (2004).
92. A. Agostiano, M. Catalano, M. L. Curri, M. Della Monica, L. Manna, L. Vasanelli, “Synthesis and Structural Characterisation of Cds Nanoparticles Prepared in a Four-Components “Water-in-Oil” Microemulsion,” Micron, 31, 253 (2000)
93. 杜仲慶, “二氧化矽粒子LB膜的製備及其表面潤溼性的探討,” 國立成功大學碩士論文 (2005).
94. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Gratzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell,” J. Phys. Chem. B, 107, 8981 (2003).
95. T. Hoshikawa, T. Ikebe, R. Kikuchi and K. Eguchi, “Effects of electrolyte in Dye-Sensitized Solar Cells and Evaluation by Impedance Spectroscopy,” Electrochimica Acta, 51, 25, 5286 (2006).
96. R. Kawano and M. Watanabe, “Equilibrium Potentials and Charge Transport of an I–/I3– Redox Couple in an Ionic Liquid,” Chem. Commun., 330 (2003).