| 研究生: |
王士榮 Wang, Shih-Jung |
|---|---|
| 論文名稱: |
序率孔彈性模式之研究 The Study on Stochastic Poroelastic Model |
| 指導教授: |
徐國錦
Hsu, Kuo-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 倒轉行為 、水壓變化 、地層下陷 、變形效應 、不確定性 、土體變形 、蒙地卡羅法 、序率孔彈性理論 、一階二動差法 |
| 外文關鍵詞: | Reverse behavior, Deformation effect, Subsidence, Change in pore water pressure, Soil deformation, Uncertainty, Monte Carlo simulation, First-order second-moment method, Stochastic poroelastic theory |
| 相關次數: | 點閱:147 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固體與流體間的交互作用為水文學中重要的物理機制之一,並廣泛應用於土壤力學、岩石力學或是水文地質學等領域中,而孔彈性理論為目前常用來解釋土體與水體間耦合作用之物理模式。然而,目前孔彈性理論幾乎僅在定率模式中做探討,而現地採樣之不確定性與資料之不完全性,造成定率模式之應用受到限制。序率方法採用統計的概念,設定參數或邊界條件為隨機變數來探討變數間之平均行為與共變異行為,不僅可以獲得定率式之結果,還可以可用來估算變數之相關性與不確定性,提供更多孔彈性耦合系統中之資訊。本研究為首次採用計算效率較高之一階二動差序率方法(FOSM)來建構FOSM序率孔彈性模式,同時並採用序率方法中常用之蒙地卡羅法(MC)來建構MC序率孔彈性模式,再藉由孔彈性參數受到變形效應下之變化建構出非線性模式,最後以一維度模式展現序率孔彈性理論之應用。
模式驗證中,FOSM序率孔彈性模式在頂端載重案例中之平均值解,與共變異函數在側向水流案例中,皆與文獻中之解析解和數值解一致,確認本研究所建構之FOSM序率孔彈性模式之適用性。敏感度分析中,影響模式行為較顯著之參數為水力傳導係數與楊氏模數,而泊松比對模式之影響與楊氏模數相似,孔隙率則無顯著影響。頂端載重與底端排水之邊界作用對土體造成之影響不同,而楊氏模數對頂端載重與底端排水作用下之位移影響較顯著,而水力傳導係數則對底端排水作用下之位移與孔隙水壓變化之影響皆顯著。
在地層下陷問題之分析上,頂端載重與底端排水邊界條件對土體沉陷行為之影響不同,而同時施加頂端載重與底端排水時,初始行為主要受到頂端載重之影響而後段之行為則主要受到底端排水之影響,且其平均行為符合線性疊加原理。受到已知邊界之影響,位移與孔隙水壓變化之變異函數在已知邊界為零,且隨著已知邊界距離之增加而增加;頂端載重作用下,最終土體趨近於靜態穩定,因此共變異函數會趨近於零;底端排水作用下,最終土體趨近於動態穩定,因此共變異函數會趨近於定值,其不確定性來自於土體中水流之影響。
在變形效應作用下,孔隙率、水力傳導係數與楊氏模數之變化率結果皆顯示,頂端載重加底端排水之作用小於同時施加頂端載重與底端排水作用之結果,表示同時施加兩種邊界驅動力時,其綜合作用之效應大於任何單獨驅動力之作用。平均總沉陷量、孔隙水壓變化與頂端水流通量在無變形效應下符合線性疊加原理,而受到變形效應之影響成為非線性行為。單向壓密試驗之參數擬合結果顯示,水力傳導係數、楊氏模數與泊松比之參數推估與使用土體介於粉砂到黏土間之特性相當。而沉陷量與孔隙水壓變化之變異數解中,土體在壓密初始時間僅在靠近兩邊界端處產生排水與沉陷,因此造成孔隙水壓變化之最大變異數發生在靠近邊界處且為對稱;而受到底部固定位移邊界之影響,沉陷量之最大變異數發生在頂端位置。
在倒轉效應之模擬中,變異函數 可代表孔隙水壓變化與位移相對於平均值之相關性,在FOSM與MC數值模式中,抽水時 在淺層且短時間內,為孔隙水壓下降而位移亦減少(膨脹)之倒轉行為;而排水作用停止的模擬中,同樣可以觀察到Rhade效應,且當水力傳導係數或楊氏模數較小時,倒轉行為較為顯著。倒轉行為的發生和空間與時間之尺度有關,當空間尺度較小或時間尺度較小時,較大的水力傳導係數或楊氏模數所建立的模式中,將同樣可以觀察到倒轉行為。
The interaction between solid deformation and fluid flow is an important mechanism in hydrogeology. The behavior is widely applied to soil mechanics, rock mechanics, and hydrogeology fields. Poroelastic theory is a commonly used physical model, which uses displacement and change in pore water pressure as the variables to explain the coupled behavior between soil deformation and water flow. The traditional poroelastic theory is treated as the deterministic model; however, material properties usually show strong variations in nature and the heterogeneity may strongly affect the system. In this study stochastic approach was applied to explore the statistic behavior and estimate the uncertainty. The first-order second-moment (FOSM) stochastic method was used to construct the stochastic poroelastic model. The commonly used stochastic method – Monte Carlo simulation (MC) was also constructed to validate the results of FOSM. The nonlinear effect on the parameters change caused by deformation was taken into consideration. Both mean and covariance behavior of variables were evaluated in the stochastic poroelastic model under different scenarios. The numerical model was verified and showed the perfectly match with the analytical and numerical solutions. Parameter sensitivity was analyzed and showed that hydraulic conductivity and Young’s modulus play different roles under different driving forces.
The application of the stochastic poroelastic model to the subsidence problems shows that the dynamic behavior of a coupled flow-stress system is more complex than a system that does not consider the deformation of porous media. Loading effects on deformation and pore pressure are instantaneous while the effect of discharge takes time to propagate from the boundary through the whole domain. Both loading and discharge boundary conditions can significantly affect the uncertainty of the system response. In the scenario combining loading on the top boundary and discharge at the bottom boundary, the mean total settlement and the average flux satisfy the relationship of superposition to be the sum of the separated effects of loading on the top boundary and discharge at the bottom boundary, but the variances do not.
The results of deformation effect show that the maximum changes of porosity, hydraulic conductivity, and Young’s modulus are nonlinear in three examined scenarios. While hydraulic conductivity increases the time for the system to reach steady state, Young’s modulus decreases the time. The coupled system that considers the deformation effect takes longer to reach the final state, especially for the second-moment statistics. The nonlinear stochastic poroelastic model is applied to the laboratory consolidation experiment to estimate the parameters in the consolidation test. Besides the mean estimation of parameter, the model also provides the uncertainty analysis in the simulation.
The reserve phenomenon of aquifer due to groundwater pumping and its ceases was investigated. The results show that while the expansion of soil deformation and the reduction in the change of pore water pressure are not significant in the system’s mean behavior, the second moment solutions were able to well capture the reverse phenomena that are analogous to the Noordbergum and Rhade effects shown in the deterministic system. The adopted one-dimensional FOSM method can serve as a tool to analyze the reverse phenomenon occurring in heterogeneous porous media, where the monitoring screen is adjacent to the pumped layer but at a distance from the pumping well. The best monitoring location is found to be close to mid depth of the observing area.
1. Andreasen, G.E., Brookhart, J.W., 1963. Reverse water level fluctuations: Methods of collecting and interpreting ground-water data. U.S. Geological Survey Water Supply Paper 1544-H, 30-35.
2. Bakr, A. A., L. W. Gelhar, A. L. Gutjahr, and J. R. MacMillan, 1978, Stochastic analyses of variability in subsurface flows, 1, Comparison of one- and three-dimensional flows, Water Resources Reserch, 14(2), 263-272.
3. Barksdale, H.C., Sundstrom, R.W., Brunstein, M.S., 1936. Supplementary Report on the Ground-Water Supplies of the Atlantic City Region. State of New Jersey, State Water Policy Commission Special Report 6.
4. Bau, D., M. Ferronato, G. Gambolati, and P. Teatini, 2004, Surface flow boundary conditions in modeling land subsidence due to fluid withdrawal, Ground Water, Vol. 42, No. 4, pp. 516-525.
5. Bear J., 1972. Dynamics of Fluids in Porous Media. Elsevier: New York; 764.
6. Beavan, J., K. Evans, S. Mousa, and D. Simpson, 1991, Estimating aquifer parameters from analysis of forced fluctuations in well level: A example from the Nubian formation near Aswan, Egypt 2. Poroelastic properties, Journal of Geophysical Research, 96(B7), 12139-12160.
7. Biot, M. A., 1941, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155-164.
8. Biot, M. A., 1956, Theory of deformation of a porous viscoelastic anisotropic solid, Journal of Applied Physics, 27, 459-467.
9. Biot, M. A., 1964, Theory of buckling of a porous slab and its thermoelastic analogy, Journal of Applied Mechanics, 31, 194-198.
10. Biot, M. A., 1973, Nonlinear and semilinear rheology of porous solids, Journal of Geophysical Research, 78(23), 4924-4937.
11. Booker, J. R., and J. P. Carter, 1986, Long term subsidence due to fluid extraction from a saturated, anisotropic, elastic soil mass, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 39, No. 1, pp. 85-97.
12. Bowles, J.E., 1996. Foundation analysis and design. New York: McGraw-Hill.
13. Burbey, T.J., 1999. Effects of horizontal strain in estimating specific storage and compaction in confined and leaky aquifer systems, Hydrogeology Journal 7, 521-532.
14. Castelletto, N., M. Ferronato, G. Gambolati, M. Putti, and P. Teatini, 2008, Can Venice be raised by pumping water underground? A pilot project to help decide, Water Resources Research, Vol. 44, W01408, doi: 10.1029/2007WR006177.
15. Chang, C. M., and H. D. Yeh, 2009, Stochastic analysis of bounded unsaturated solute transport in heterogeneous aquifers: Spectral/perturbation approach, Advances in Water Resources, 32, 120–126, doi: 10.1016/j.advwatres.2008.10.011.
16. Chen, G.-J., 2002, Analysis of pumping in multilayered and poroelastic half space, Computers and Geotechnics, Vol. 30, No. 1, pp. 1-26.
17. Chen, G.-J., 2005, Steady-state solutions of multilayered and cross-anisotropic poroelastic half-space due to a point sink, International Journal of Geomechanics, Vol. 5, No. 1, pp. 45-57.
18. Chen, M., D. Zhang, A. A. Keller, and Z. Lu, 2005, A stochastic analysis of steady state two-phase flow in heterogeneous media, Water Resources Research, Vol. 41, W01006, doi:10.1029/2004WR003412.
19. Chirlin, G. R., and G. Dagan, 1980, Theoretical head variograms for steady flow in statistically homogeneous aquifers, Water Resources Research, 16(6), 1001-1015.
20. Christensen, N. I., and H. F. Wang, 1985, The influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone, Geophysics, 50(2), 207-213.
21. Cirpka, O.A., Nowak W., 2004. First-order variance of travel time in nonstationary formations. Water Resources Research 40: W03507, doi:10.1029/2003 WR002851.
22. Coussy, O., 2004, Poromechanics, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.
23. Cryer, C. W., 1963, A comparison of the three-dimensional consolidation theories of Biot and Terzaghi, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 16, pp. 401-412.
24. Dagan, G., 1982, Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 1, Conditional simulation and the direct problem, Water Resources Reserch, 18(4), 813-834.
25. Dagan, G., 1989, Flow and Transport in Porous Formations, Springer-Verlag Berlin Heidelberg.
26. Dagan, G., and S. P. Neuman, 1997, Subsurface Flow and Transport: A Stochastic Approach, Cambridge University Press, New York.
27. Das, B. M., 1998, Advanced Soil Mechanics, Second Edition, Taylor & Francis.
28. Dettinger, M. D., and J. L. Wilson, 1982, First order analysis of uncertainty in numerical models of groundwater flow, 1, Mathematical development, Water Resources Reserch, 18(4), 1157-1164.
29. Deutsch C, Journel A. 1998. GSLIB, Geostatistical Software Library and User’s Guide, 2nd ed. Oxford Univ. Press: New York.
30. Faust, C.R., and J.W. Mercer, 1980, Ground-Water Modeling: Numerical Models, Ground Water, 18(4), 395-409.
31. Ferrante, M., Yeh, T.-C. J., 1999. Head and flux variability in heterogeneous unsaturated soils under transient flow conditions. Water Resources Research 35(4), 1471-1479.
32. Ferris, J.G., Knowles, D.B., Brown, R.H. and Stallman, R.W., 1962. Theory of aquifer tests. US Geol, Survey Water Supply Paper 153-E.
33. Ferronato M, Mazzia A, Pini G, Gambolati G. 2007. A meshless method for axi-symmetric poroelastic simulafions: Numerical study. International Journal for Numerical Methods in Engineering 70(11): 1346-1365.
34. Ferronato, M., G. Gambolati, P. Teatini, and D. Bau, 2006, Stochastic poromechanical modeling of anthropogenic land subsidence, International Journal of Solids and Structures, Vol. 43, No. 11-12, pp. 3324-3336.
35. Fiori, A., and D. Russo, 2008, Travel time distribution in a hillslope: Insight from numerical simulations, Water Resources Research, 44, W12426, doi:10.1029/2008WR007135.
36. Freeze, R. A., 1975, A stochastic-conceptual analysis of one-dimensional groundwater flow in non-uniform, homogeneous media, Water Resources Research, 11(5), 725~741.
37. Freeze, R. A., and J. A. Cherry, 1979, Groundwater, Prentice-Hall, Englewood Cliffs, N.J..
38. Frias, D. G., M. A. Murad, and F. Pereira, 2004, Stochastic computational modelling of highly heterogeneous poroelastic media with long-range correlations, International Journal for Numerical and Analytical Methods in Geomechanics, 28(1), 1-32.
39. Fung, Y. C., 1994, A First Course in Continuum Mechanics: for Physical and Biological Scientists and Engineers — 3rd, Prentice-Hall, Inc., A Simon & Schuster Company, Englewood Cliffs, New Jersey.
40. Gambolati, G., 1974. Second-order theory of flow in three-dimensional deforming media. Water Resources Research 10, 1217–1228.
41. Gambolati, G., G. Ricceri, W. Bertoni, G. Brighenti, and E. Vuillermin, 1991, Mathematical simulation of the subsidence of Ravenna, Water Resources Research, Vol. 27, No. 11, pp. 2899-2918.
42. Gambolati, G., P. Teatini, D. Bau, and M. Ferronato, 2000, Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy, Water Resources Research, Vol. 36, No. 9, pp. 2443-2459.
43. Gelhar, L. W., 1974, Stochastic analysis of phreatic aquifers, Water Resources Research, 10(3), 539-545.
44. Gelhar, L. W., 1977, Effects of hydraulic conductivity variations on groundwater flows, In Proceedings Second International Symposium on Stochastic Hydraulics, International Association for Hydraulic Research, Lund, Sweden, 409-428, Water Resources Publications, Fort Collins, CO.
45. Gelhar, L. W., 1993, Stochastic Subsurface Hydrology, Prentice-Hall, Inc. Englewood Cliffs, New Jersey.
46. Green, D. H., and H. F, Wang, 1986, Fluid pressure response to undrained compression in saturates sedimentary rock, Geophysics, 51(4), 948-956.
47. Green, D. H., and H. F. Wang, 1990, Specific storage as a poroelastic coefficient, Water Resources Research, 26(7), 1631-1637.
48. Gutjahr, A. L., and L. W. Gelhar, 1981, Stochastic models of subsurface flow: Infinite versus finite domains and stationarity, Water Resources Research, 17(2), 337-350.
49. Hsieh, P.A., 1996. Deformation-Induced Changes in Hydraulic Head During Ground-Water Withdrawal. Groundwater 34(6), 1082-1089.
50. Hsu, K.-C., and C.-C. Tung, 2005, On estimating the earthquake-induced changes in hydrogeological properties of the Choshuishi Alluvial Fan, Taiwan, Hydrogeology Journal, 13, 467-480.
51. Hughson, D. L., Yeh, T.-C. J., 2000. An inverse model for three-dimensional flow in variably saturated porous media. Water Resources Research 36(4), 829-839.
52. Kim JM, Parizek RR. 1999. A mathematical model for the hydraulic properties of deforming porous media. Ground Water 37(4): 546-554.
53. Kim JM. 2005. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resources Research 41: W01003. doi: 10.1029/2003WR002941.
54. Kim, J. M., R. R. Parizek, and D. Elsworth, 1997, Evaluation of fully-coupled strata deformation and groundwater flow in response to longwall mining, International Journal of Rock Mechanics and Mining Sciences, 34(8), 1187-1199.
55. Kim, J.M., R.R. Parizek, 1997. Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system. Journal of Hydrology 202, 231–243.
56. King, C.Y., S. Azuma, G. Igarashi, M. Ohno, H. Saito, and H. Wakita, 1999, Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan, Journal of Geophysical Research, Vol. 104, No.B6, pp. 13073-13082.
57. King, C.-Y., S. Azuma, M. Ohno, Y. Asai, P. He, Y. Kitagawa, G. Igarashi, and H. Wakita, 2000, In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan, Geophysical Journal International, Vol. 143, pp. 469-477.
58. Kobayashi, A., T. Fujita, and M. Chijimatsu, 2001, Continuous approach for coupled mechanical and hydraulic behavior of a fractured rock mass during hypothetical shaft sinking at Sellafield, UK, International Journal of Rock Mechanics & Mining Sciences, Vol. 38, 45-57.
59. Kumpel, H. J., 1991, Poroelasticity: parameters reviewed, Geophysical Journal International, 105, 783-799.
60. Kunstmann, H., W. Kinzelbach, and T. Siegfried, 2002, Conditional first-order second-moment method and its application to the quantification of uncertainty in groundwater modeling, Water Resources Research, 38(4), 6-1~6-15.
61. Langguth, H.R., Treskatis, C., 1989. Reverse water level fluctuations in semiconfined aquifer systems - "Rhade effect". Journal of Hydrology 109, 79-93.
62. Li, B., Yeh, T.-C. J., 1998. Sensitivity and moment analyses of head in variably saturated regimes. Advances in Water Resources 21(6), 477-485.
63. Lin, Y.-B., Y.-C. Tan, T.-C. J. Yeh, C.-W. Liu, and C.-H. Chen, 2004, A Visco-elastic model for groundwater level changes in ChouShui river alluvial fan after the ChiChi earthquake in Taiwan, Water Resources Research 40, W04213.
64. Liu, J., and D. Elsworth, 1999, Evaluation of pore water pressure fluctuation around an advancing longwall face, Advances in Water Resources, 22(6), 633-644.
65. Mandel, J., 1950. Etude mathematique de la consolidation des sols. In: Acts Du Colloque International De Mechanique. Poitier, France, 4, 9–19.
66. Mandel, J., 1953. Consolidation des sols (Etude mathematique). Geotechnique 3, 287–299.
67. Masterlark, T., and H. Wang, 2000, Poroelastic coupling between the 1992 Landers and Big Bear earthquakes, Geophysical Research Letters, 27(22), 3647-3650.
68. Masterlark, T., C. DeMets, H. F. Wang, O. Sanchez, and J. Stock, 2001, Homogeneous vs heterogeneous subduction zone models: Coseismic and postseismic deformation, Geophysical Research Letters, 28(21), 4047-4050.
69. Matsumoto, N., and E. A. Roeloffs, 2003, Hydrologic response to earthquakes in the Haibara well, central Japan: II. Possible mechanism inferred from time-varying hydraulic properties, Geophysical Journal International, 155(3), 885-898.
70. Matsumoto, N., G. Kitagawa, and E. A. Roeloffs, 2003, Hydrologic response to earthquakes in the Haibara well, central Japan: I. Groundwater-level changes revealed using state space decomposition of atmospheric pressure, rainfall, and tidal responses, Geophysical Journal International, 155(3), 899-913.
71. McLaughlin, D. B., and E. F. Wood, 1988, A distributed parameter approach for evaluating the accuracy of groundwater model predictions, 1, Theory, Water Resources Research, 24(7), 1037-1047.
72. Noorishad, J., M. Mehran, and T.N. Narasimhan, 1982, On the formulation of saturated- unsaturated fluid flow in deformable porous media, Advance in Water Resources, Vol. 5, pp. 61-62.
73. Pappenberger, F., and K. J. Beven, 2006, Ignorance is bliss: Or seven reasons not to use uncertainty analysis, Water Resources Research, Vol. 42, W05302, doi:10.1029/2005WR004820.
74. Phani, K.K. and D. Sanyal, 2005, Critical reevaluation of the prediction of effective Poisson’s ratio for porous materials, Journal of Materials Science, Vol. 40, 5685-5690.
75. Remson, I., Hornberger, G.M., and Molz, F.J., 1971. Numerical Methods in Subsurface Hydrology, New York: Wiley-Interscience; 389.
76. Rice, J. R., and M. P. Cleary, 1976, Some basic stress diffusion solutions for fluid-saturate elastic porous media with compressible constituents, Reviews of Geophysics and Space Physics, 14(2), 227-241.
77. Rodrigues, J.D., 1983. The Noordbergum effect and the characterization of aquitards at the Rio Maion mining project. Ground Water 21(2), 200-207.
78. Roeloffs, E. A., 1988, Hydrologic precursors to earthquake:A review, Pure and Applied Geophysics, 126, 177-209.
79. Roeloffs, E. A., 1996, Poroelastic techniques in the study of earthquake-related hydrologic phenomena, in Advances in Geophysics, edited by R. Dmowska, Academic, San Diego, Calif, 137, 135-195.
80. Roeloffs, E. A., 1998, Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes, Journal of Geophysical Research, 103(B1), 869-889.
81. Rubin, Y., 2003, Applied Stochastic Hydrogeology, Oxford University Press, New York, New York.
82. Schiffman, R. L., A. T. F. Chen, and J. C. Jordan, 1969, An analysis of consolidation theories, Journal of the Soil Mechanics and Foundations Division : Proceedings of the American Society of Civil Engineers, Vol. 95(SM1), pp. 285-312.
83. Schwartz, F.W., Zhang, H., 2003. Fundamentals of Ground Water. John Wiley & Sons.
84. Selvadurai, A.P.S., Shirazi, A., 2004. Mandel–Cryer effects in fluid inclusions in damage-susceptible poroelastic geologic media. Computers and Geotechnics 31, 285–300.
85. Tang, D. H., and G. F. Pinder, 1977, Simulation of groundwater flow and mass transport under uncertainty, Advances in Water Resources, 1(1), 25-30.
86. Teatini, P., M. Ferronato, G. Gambolati, and M. Gonella, 2006, Groundwater pumping and land subsidence in the Emilia- Romagna coastland, Italy: Modeling the past occurrence and the future trend, Water Resources Research, Vol. 42, W01406, doi:10.1029/2005WR004242.
87. Terzaghi, K., 1925, Erdbaumechanik auf boenphysikalischer grundlage, Deuticke, Vienna.
88. Tsai, T.L., Chang, K.C. and Huang, L.H., 2006, Body force effect on porous elastic media due to pumping, Journal of the Chinese Institute of Engineers 29, 75-82.
89. Van Eyden, W.A.A, Kuper, H.W., Santema, P., 1964. Some method used in geo-hydrologic survey of the south-western deltaic area in the Netherlands. International Association of Scientific Hydrology Publication 66, 528-557.
90. Verruijt, A., 1969, Elastic storage of aquifers, Flow Through Porous Media, Edited by J. M. De Wiest.
91. Wang, H. F., 1993, Quasi-static poroelastic parameters in rock and their geophysical applications, Pure and Applied Geophysics, 141, 269-286.
92. Wang, H.F., 2000. Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press.
93. Wang, H.F., and M.P. Anderson, 1982, Introduction to Groundwater Modeling - Finite Difference and Finite Element Methods. New York: W. H. Freeman and Company.
94. Wang, S.-J. and K.-C. Hsu, 2009, The Application of the First-Order Second-Moment Method to Analyze Poroelastic Problems in Heterogeneous Porous Media, Journal of Hydrology, 369(1-2), 209-221, doi: 10.1016/j.jhydrol.2009.02.049.
95. Warren, J. E., and H. S. Price, 1961, Flow in heterogeneous porous media, Society of Petroleum Engineers Journal, 1, 153-169.
96. Wolff, R.G., 1970a. Field and laboratory determination of the hydraulic diffusivity of a confining bed. Water Resources Research 6, 194–203.
97. Wolff, R.G., 1970b. Relationship between horizontal strain near a well and reverse water level fluctuation. Water Resources Research 6, 1721–1728.
98. Yin, S., Dusseault, M.B., Rothenburg, L., 2007. Analytical and numerical analysis of pressure drawdown in a poroelastic reservoir with complete overburden effect considered. Advances in Water Resources 30, 1160-1167.
99. Zhang D., and C. L. Winter, 1998, Nonstationary stochastic analysis of steady state flow through variably saturated, heterogeneous media, Water Resources Research, 34(5), 1091-1100.
100. Zhang, D., 1998, Numerical solutions to statistical moment equations of groundwater flow in nonstationary, bounded, heterogeneous media, Water Resources Research, 34(3), 529-538.
101. Zhang, D., 2002, Stochastic Methods for Flow in Porous Media —coping with Uncertainties, Academic Press, Orlando, Florida.
102. Zhang, D., and S. P. Neuman, 1995a, Eulerian-Lagrangian analysis of transport conditioned on hydraulic data: 1. Analytical-numerical approach, Water Resources Research, 31(1), 39-51.
103. Zhang, D., and S. P. Neuman, 1995b, Eulerian-Lagrangian analysis of transport conditioned on hydraulic data: 2. Effects of log transmissivity and hydraulic head measurements, Water Resources Research, 31(1), 53-63.
104. Zhang, D., and S. P. Neuman, 1995c, Eulerian-Lagrangian analysis of transport conditioned on hydraulic data: 3. Spatial moments, travel time distribution, mass flow rate, and cumulative release across a compliance surface, Water Resources Research, 31(1), 65-75.
105. Zhang, D., and S. P. Neuman, 1995d, Eulerian-Lagrangian analysis of transport conditioned on hydraulic data: 4. Uncertain initial plume state and non-Gaussian velocities, Water Resources Research, 31(1), 77-88.
106. Zhang, D., Lu, Z., 2002. Stochastic analysis of flow in a heterogeneous unsaturated-saturated system. Water Resources Research 38 (2), 1018, 10.1029/2001 WR000515.
107. Zhang, D., T. C. Wallstrom, and C. L. Winter, 1998, Stochastic analysis of steady-state unsaturated flow in heterogeneous media: Comparsion of the Brooks-Corey and Gardner-Russo models, Water Resources Research, 34(6), 1437-1449.
108. 工研院能資所,2003,台灣地區地層下陷監測調查分析,期末報告,經濟部水利署。
109. 工研院能資所,2007,95年度彰雲地區地層下陷監測及分析計畫,計劃報告,經濟部水利署。
110. 財團法人中興工程顧問社,1999,「水庫淤泥固化與棄置」,專案研究報告。