| 研究生: |
何志麟 Ho, Chih-Lin |
|---|---|
| 論文名稱: |
低塑性粉土內沖蝕性質之研究─驟變壓力差試驗狀況 A Study on Internal Erosion Properties of Low Plastic Silty Sand- Sudden Pressure Difference Test Condition |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 低塑性粉土 、內沖蝕性質 、Flexible Wall Pin Hole試驗 |
| 外文關鍵詞: | low-plastic silt, internal erosion, Flexible Wall Pin Hole test |
| 相關次數: | 點閱:149 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣西南部土層多含有顆粒細小且低塑性之低塑性粉土,且近年在施作地下開挖工程或是進行潛盾隧道工程時,常因發生管湧破壞而產生諸多重大工程災害,因此有必要藉由相關室內試驗來探討低塑性粉土之內沖蝕性質。
先前研究以Flexible Wall Pin Hole(簡稱FWPH)試驗儀進行穩定壓力差試驗,其試驗結果証明,FWPH試驗能有效探討低塑性粉土受長期穩定滲流之土壤內沖蝕性質,本研究為模擬深開挖工程因地下水滲入開挖面而引發土壤流失現象,故以FWPH試驗儀與不同狀態之試體進行驟變壓力差試驗來探討土壤內沖蝕性質,其中試體控制因素為孔隙比、有效圍壓、細粒料含量與細粒料塑性指數。
由試驗結果顯示,低塑性粉土之抗沖蝕能力隨著有效圍壓或細粒料含量增加而降低,隨著試體孔隙比減少而提高。另外,土壤抗沖蝕能力隨細粒料塑性指數增加而有明顯提高之現象。綜觀上述結果可知,FWPH試驗可有效探討土層之內沖蝕性質,且就低塑性粉土層而言,可藉由降低地下水位差、提高土層緊密程度與降低開挖深度等方式來避免管湧破壞現象之產生。
The low-plastic silt with the characteristic of fine grains is considerably popular appeared in the strata those spreading area of Southwestern Taiwan. Recently many severe disasters, due to the piping, occurred in those low-plastic silt strata, especially related to the deep excavation or tunneling by Tunnel Boring Machine. Therefore, it is necessary to investigate the engineering properties, which related to the deep excavation of the low-plastic silt in field.
The Flexible Wall Pin Hole apparatus (FWPH) was used to investigate the behavior of low-plastic silt under stead pressure condition. The results showed that FWPH was able to study the long-term properties of internal erosion in low-plastic silt. In this study the FWPH apparatus is also adopted to simulate the piping effect in a deep excavation due to the seepage of groundwater. The specimens of low-plastic silt with different void ratios, various fine contents and plastic indices under the conditions of sudden pore pressure changes are performed in the tests.
The test results showed that the resistance of internal erosion of low-plastic silt would decrease as increase in confining pressure and fine content, however the resistance of internal erosion would increase as void ratio decrease. In addition, the resistance of internal erosion would increase as the plasticity index of fines increase. In summary, FWPH test can be used to investigate the property of internal erosion of stratum under conditions which sudden pore water pressure change. As deep excavation in low-plastic strata, the possible piping failure can be mitigated as both reducing the groundwater and the depth of excavation.
1.吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁,1987。
2.林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,碩士論文,國立成功大學土木工程研究所,臺南,2006。
3.林煒喬,「不同圍壓狀態對低塑性粉土內部沖蝕性質之影響」,碩士論文,國立成功大學土木工程研究所,臺南,2011。
4.倪勝火,國立成功大學土壤力學實驗手冊,2006。
5.夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,臺北,1992。
6.財團法人臺灣營建研究院,「高雄捷運工程橘線CO2區段標LUO09潛盾隧道坍陷原因鑑定報告」,2006。
7.財團法人臺灣營建研究院,「高雄捷運工程橘線CO1區段標SUO01車站連續壁滲水坍塌事故再分析與對應契約影響之研究報告」,2007。
8.游家豪,「低塑性細料對粉質砂土動態性質之影響」,碩士論文,國立成功大學土木工程研究所,臺南,2007。
9.黃安斌、林志平、紀雲曜、古志生、蔡錦松、李德河、林炳森,「台灣中西部粉土細砂液化行為分析」,地工技術,第103 期,第5-30 頁,2005。
10.葉向陽,分散性黏土及其處理方式,現代營建雜誌,地下工程實務(二),臺灣,臺北,1985。
11.楊騰芳,「細粒料在過壓密及前期微震作用下對飽和砂性土壤液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,臺北,1986。
12.萬鼎工程公司,「高雄捷運紅橘線路網補充地質調查工程地質調查報告書」,2001。
13.潘家錚主編,土石壩,水利電力出版社,中國,北京,1992。
14.廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,碩士論文,國立成功大學土木工程研究所,臺南,2005。
15.蕭吉良,「低塑性粉土內部沖蝕性質之研究」,碩士論文,國立成功大學土木工程研究所,臺南,2010。
16.盧國安,「水庫淤泥製造高強度土壤材料之研究」,碩士論文,國立成功大學土木工程研究所,臺南,2008。
17.ASTM Standard D4647-06 Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test. ASTM International,West Conshohocken, PA. www.astm.org, 2006.
18.Decker, R.S. and Dunnigan, L.P., ‘‘Dispersive and Use of the SCS Dispersion Test,’’ Paper Submitted for ASTM Symposium on Dispersive Clay, June, 1976.
19.EI Hosri, M.S., Biarez, H., Hicher, P. Y., ‘‘Liquefaction Chacteristics of Silty Clay,’’ proc., 8th World Conf. on Earthquake Engrg., Prentice-Hall,Englewood Cliffs, N. J. Vol. 3, pp. 277-284, 1984.
20.Ishihara, K. and Lee, W. F., ‘‘Forensic Diagnosis for Site-Specific Ground conditions in Deep Excavations of Subway Constructions,’’ Geotechnical and Geophysical Site Characterization, Proceeding of the 3rd International Conference on Site Characterization, Taipei, Taiwan, pp. 31-59, 2008.
21.Ishihara, K., ‘‘Liquefaction and Flow Failure During Earthquakes,’’ Geotechnique, Vol. 43, No.3, pp. 315-415, 1993.
22.Ishihara, K., Troncoso, J., Kawase, Y. and Takahashi, Y., ‘‘Cyclic
Strength Characteristics of Tailing Materials,’’ Soil and Foundations, pp.
127-142, 1980.
23.Kenney, T. C. and Lau, D., ‘‘Internal Stability of Granular Filters,’’ Can. Geotech. J. 22, pp. 215-225, 1985.
24.Kenney, T. C. and Lau, D., ‘‘Discussion on Internal Stability of Granular Filters,’’ Can. Geotech. J. 23, pp. 420-423, 1986.
25.Kokusho, T. and Fujikura, Y., ‘‘Effect of Particle Gradation on Seepage Failure Granular Soils,’’ Fourth International Conference on Scour and Erosion, 2008.
26.Kuerbis, R., Nequssey, D. and Vaid, Y. P., ‘‘Effect of Gradation and Fines Content on the Undrained Response of Sand,’’ Geotechnical Special Publication, NO. 21, ASCE, pp. 330-345, 1988.
27.Lee, K. L. and Fitton, J. A., ‘‘Factors Affecting the Cyclic Loading Strength of Soil,’’ Vibration Effects of Earthquakes on Soils and Foundations, ASTM STP 450, pp. 71-95, 1969.
28.Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan,K., ‘‘Effects of Sample Preparation on Sand Liquefaction,’’ Journal of the Geotechnical Engineering Division, ASCE, Vol.103, GT2, pp.91-108, 1977.
29.Sandoval, J., ‘‘Liquefaction and Settlement Characteristics of Silt Soils,’’
Ph.D thesis, University of Missouri-Rolla, Mo, 1989.
30.Sherard, J. L., Decker, R. S. and Dunnigan, L. P., ‘‘Identification and Nature of Dispersive Soils,’’ J. Geotech. Eng. Div., ASCE, Vol 102, No. GT-4, pp. 287-301, 1976.
31.Sherard, J. L., Steele E F., Decker, R. S. and Dunnigan, L. P., ‘‘Pinhole Test for Identifying Dispersive Soils,’’ J. Geotech. Eng. Div., ASCE, Vol 102, No. GT-1, pp. 69-85, 1976.
32.Singh, S., ‘‘Liquefaction Characteristics of Silts,’’ Geotechnical and Geological Engineering, Vol. 14, ASCE, pp. 1-19, 1996.
33.Skempton, A. W. and Brogan, J. M., ‘‘Experiments on Piping in Sandy Gravels,’’ Geotechnique 44, NO.3, pp. 449-460, 1994.
34.Guo Tianqiang, Prakash Shamsher, ‘‘Liquefaction of Silts and Silt-Clay Mixtures,’’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, pp. 706-710, 1999.
35.Tomlinson, S. S. and Vaid, Y. P., ‘‘Seepage Forces and Confining Pressure Effects on Piping Erosion,’’ Canadian Geotechnical Journal, Vol 37, NO. 1, pp. 1- 13, 2000.
36.Vaid, Y. P., ‘‘Liquefaction of Silty Soils,’’ Ground Failures under Seismic Conditions, Geotechnical Special Publication, NO. 44, ASCE, pp. 1-16, 1994.
37.Wolski, W., ‘‘Model Tests on the seepage Erosion in the Silty Clay Core of an Earth Dam,’’ Proc., 6th Int. Conf. on Soil Mechanics and Foundation Engineering, pp. 583–587, 1965.
38.Yamamuro J.A. and Covert K.M., ‘‘Monotonic and Cyclic Liquefaction of Very Loose Sands with High Silt Content,’’ Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, pp. 314-324, 2001.
39.Yamamuro J.A. and Poul V. Lade, ‘‘Experiments and Modeling of Silty Sands Susceptible to Static Liquefaction,’’ Mechanics of Cohesive-Frictional Meterials, Vol. 4, pp. 545-564, 1999.