簡易檢索 / 詳目顯示

研究生: 葉家顯
Yeh, Chia-hsien
論文名稱: 利用微流道晶片生成均一粒徑乳化球並應用於光交聯微粒子之製備
Using Microfluidic Chips to Generate Uniform Emulsions and Application for Photopolymerized Microparticles
指導教授: 林裕城
Lin, Yu-cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 114
中文關鍵詞: 微流道晶片均一粒徑光交聯微粒子
外文關鍵詞: uniform micro-droplets, microfluidic chip, UV-polymerizable microparticles
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在藥物使用的範疇中,如果想要使藥品能夠完全的發揮出療效,藥物的控制與釋放一向是研究的重點;並且在過去的研究文獻中發現,藥物載體的粒徑越均一,則在應用於藥物的控制與釋放上就越有優勢,但在過去文獻中所提出的製作方式,均無法有效獲得均一粒徑的載體。本研究設計了三組流道形狀和利用翻模技術製作PDMS微流道晶片,用於生成均一粒徑乳化球,在研究中設計了十字型、T字型 (type 1和type 2)三種不同微流道晶片,希望可以生成均一粒徑的乳化球,並應用於生成均一粒徑光交聯微粒子的製備上。本研究成功利用所設計的PDMS微流道晶片設備,生成均一粒徑乳化球,並且應用在光交聯微粒子上,並且探討了分離相與連續相的流量改變與生成之乳化球大小之關係,粒徑分布大小在40 ~1000 µm之間。由實驗結果中發現,當固定分離相流量時,越大的連續相流量,將得以生成越小的乳化球;相對地,在固定連續相流量的情形下,當分離相的流量越小,所生成的乳化球尺寸也越小。

    In this paper the manipulation of UV-polymerizable microparticles, using a microfluidic chip, for the encapsulation of gold nanoparticles is presented. Our strategy is based on hydrodynamic-focusing on the forming of a series of self-assembling sphere structures, the so-called water-in-oil (W/O) emulsions, in the cross-junction microchannel and T-junction microchannel. We have demonstrated that one can control the size of UV-polymerizable microparticles from 40 µm to 1000 µm in diameter (with a variation less than 10%) by altering the relative sheath/sample flow rate ratio. The microfluidic chip is capable of generating relatively uniform micro-droplets and has the advantages of active control of droplet diameter, simple and low cost process, and high throughput.

    摘要 III Abstract IV 誌謝 V 圖目錄 X 第一章 緒論 1 1-1 藥物控制釋放系統的必要性 3 1-2 藥物載體之光交聯水膠材料介紹 4 1-2-1 光交聯反應原理 6 1-2-2 製備光交聯水膠的方法 9 1-2-3 光交聯水膠的應用 10 1-3 文獻回顧 11 1-4 研究動機與目的 18 1-5 實驗架構 19 第二章 微流道晶片設計製作與數值模擬 20 2-1 微流道晶片設計 (十字型、T字型(type 1和type 2)) 20 2-2 PDMS微流道晶片製作方法 24 2-2-1 PMMA母模製作方法 (十字型晶片) 30 2-2-2 EPOXY母模製作方法 (T字型晶片(type 1和type 2)) 33 2-2-3 PDMS微流道晶片的製作 36 2-3 晶片接合技術 46 2-3-1 熱壓接合 46 2-3-2 氧電漿系統接合 46 2-4 數值模擬與分析 50 2-4-1 CFD-RC軟體介紹 50 2-4-1-1 CFD-GEOM部分 51 2-4-1-2 CFD-ACE(U)部份 52 2-4-1-3 CFD-VIEW部分 53 2-4-2 網格密度收斂性 54 2-4-2-1 十字型晶片 55 2-4-2-2 T字型晶片(type 1) 56 2-4-2-3 T字型晶片(type 2) 58 2-4-3 微流道晶片模擬參數設定 59 2-4-3-1 十字型晶片 59 2-4-3-2 T字型晶片(type 1 and type 2) 60 第三章 實驗與研究方法 61 3-1 實驗設備介紹 61 3-1-1 晶片製作設備 61 3-1-2 微量注射幫浦儀器 66 3-1-3 即時觀測系統 67 3-1-4 乳化球生成平台 68 3-1-5 紫外燈照射儀器 68 3-1-6 紫外光-可見光吸收光譜儀 69 3-1-7 黏滯係數量測系統 70 3-1-8 真空幫浦系統 71 3-2 實驗藥品介紹 72 3-2-1 光交聯乳化球實驗 72 3-2-2 金奈米粒子包覆實驗 72 3-3 實驗方法 74 3-3-1 十字型晶片生成光交聯微粒子實驗 75 3-3-2-1 T字型晶片(type 1) 76 3-3-2-2 T字型晶片(type 2) 77 3-3-3 光交聯微粒子包覆金奈米粒子 78 第四章 結果與討論 79 4-1 模擬分析結果 80 4-1-1 十字型晶片 80 4-1-2 T字型晶片(type 1) 81 4-1-3 T字型晶片(type 2) 83 4-2 流量與光交聯微粒子生成粒徑之關係 85 4-2-1 十字型晶片 85 4-2-2 T字型晶片(type 1) 91 4-2-3 T字型晶片(type 2) 97 4-3 金奈米粒子包覆實驗 103 第五章 結論與建議 105 5-1 結論 105 5-2 建議 107 參考文獻 108

    [1] L. G. Griffith, “Polymeric biomaterials,” Acta Materialia, 48, 263, 2000.
    [2] http://www.chemnet.com.tw/magazine/200306/index7.htm
    [3] J. L. Hill-West, S. M. Chowdhury, R. C. Dunn and J. A. Hubbell, “Efficacy of a resorbable hydrogel barrier, oxidized regenerated cellulose, and hyaluronic acid in the prevention of ovarian adhesions in a rabbit model,” Fertility and Sterility , 62, 630, 1994.
    [4] S. M. Chowdhury and J. A. Hubbell, “Adhesion prevention with ancord release via a tissue-adherent hydrogel,” Journal of Surgical Research, 61, 58, 1996.
    [5] J. Elisseeff, W. McIntosh, K. Anseth, S. Riley, P. Ragan and R. Langer, “Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks,” Journal of Biomedical Materials Research, 51, 164, 2000.
    [6] B. A. M. Venhoven, A. J. Gee and C. L. Davidson, “Light initiation of dental resins: dynamics of the polymerization,” Biomaterials, 17, 2313, 1996.
    [7] K. T. Nguyen and J. L. West, “Photopolymerization hydrogels for tissue engineering applications,” Biomaterials, 23, 4307, 2002.
    [8] A. B. Scranton, C. N. Bowman and R. W. Peiffer, “Photopolymerization fundamentals and applications,” New Orleans: ACS Publishers, 1996.
    [9] C. Decker, “UV-curing chemistry: past, present, and future,” Journal of Coatings Technology, 59, 97, 1987.
    [10] J. P. Fisher, D. Dean, P. S. Engel and A. G. Mikos, “Photoinitiated polymerization of biomaterials,” Annual Review of Materials Research, 31, 171, 2000.
    [11] S. J. Byrant, C. R. Nuttelman and K. S. Anseth, “Cytocompatibility of UV and visible kight photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” Journal of Biomaterials Science, Polymer Edition, 11, 439, 2000.
    [12] J. L. West and J. A. Hubbell, “Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injuries in the rat: the roles of medial and luminal factors in arterial healing,” Proceedings of the National Academy of Sciences of the United States of America, 93, 13188, 1996.
    [13] A. S. Sawhney and C. P. Pathak, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” Journal of Biomedical Materials Research, 28, 831, 1994.
    [14] J. Lee, C. W. Macosko and D. W. Urry, “Swelling behavior of crosslinked elastomeric polypentapeptide-based hydrogels,” Macromolecule, 34, 4114, 2001.
    [15] B. K. Mann, A. S. Gobin, A. T. Tsai, R. H. Schmedlen and J. L. West, “Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering,” Biomaterials, 22, 3045, 2001.
    [16] D. A. Drew and R. T. Lahey, “Phase distribution mechanisms in two-phase flow in a circular pipe,” Journal of Fluid Mechanics, 117, 91, 1982.
    [17] R. T. Lahey and D. A. Drew, “The aanalysis of two-phase flow and heat transfer using a multidimensional, four field, two fluid model,” Nuclear Engineering and Design, 204, 29, 2001.
    [18] T. C. Kuo, A. S. Yang and C. C. Chieng, ‘‘Bubble size and system pressure effects on phase distribution for two phase turbulent bubbly flows,’’ Journal of Mechanical Engineering Science, 215, 121, 2001.
    [19] M. Ishii, “Thermal-fluid dynamics of two-phase flow,” Eyrolles, Paris, 1975.
    [20] M. Ishii and K. Mishima, “Two-fluid model hydrodynamic constitutive relation,” Nuclear Engineering and Design, 82, 107, 1984.
    [21] M. Ishii and N.Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE Journal, 25, 843, 1979.
    [22] R. T. Lahey, “The analysis of phase separation and phase distribution phenomena using two-fluid models,” Nuclear Engineering and Design, 122, 17, 1990.
    [23] P. J. C. Taylor, “A device for counting small particles suspended in a fluid through a tube,” Nature, 171, 37, 1953.
    [24] W. H. Coulter, “High speed automatic blood cell and cell size analyzer,” Proceedings of the National Electronics Conference, 1034, 1956.
    [25] K. Seiler, D. J. Harrison and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, 593, 253, 1992.
    [26] F. F. Mandy, M. Bergeron and T. Minkus, “Principles of flow cytometry,” Transfusion Science, 16, 303, 1995.
    [27] P. L. Judson and L. L. Van, “Flow cytometry,” Primary Care Update for OB/GYNS, 4, 87, 1997.
    [28] B. C. Ferrari, G. Vesey, K. A. Davis, M. Gucci and D. Veal, “A novel two-color flow cytometric assay for the detection of cryptosporidium in environmental water samples,” Cytometry, 41, 216, 2000.
    [29] R. Rong, J. W. Choi and C. H. Ahn, “A functional magnetic bead biocell sorter using fully integrated magnetic micro nano tips,” IEEE Micro Electro Mechanical Systems, 530, 2003.
    [30] C. B. Fuh, H. Y. Tsai and J. Z. Lai, “Development of magnetic split-flow thin fractionation for continuous particle separation,” Analytica Chimica Acta, 497, 115, 2003.
    [31] M. Ozkan, M. Wang, C. Ozkan, R. Flynn, A. Birkbeck and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomedical Microdevices, 5, 61, 2003.
    [32] I. Doh and Y. H. Cho, “A continuous cell separation chip using hydrodynamic dielectrophoresis process,” Sensors and Actuators A, 121, 59, 2005.
    [33] F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio and K. Itoigawa, “High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis,” Electrophoresis, 22, 283, 2001.
    [34] X. B. Wang, J. Vykoukal, F. F. Becker and P. R. C. Gascoyne, “Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation,” Biophysical Journal, 74, 2689, 1998.
    [35] Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristiniab and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab On a Chip, 4, 292, 2004.
    [36] Y. C. Tan and A. P. Lee, “Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system,” Lab On a Chip, 5, 1178, 2005.
    [37] S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using “flow focusing” in microchannels,” Applied Physics Letter, 82, 364, 2003.
    [38] V. Cristini and Y. C. Tan, “Theory and numerical simulation of droplet dynamics in complex flows-a review,” Lab on a Chip, 4, 257, 2004.
    [39] W. J. Jeong, J. Y. Kim, J. Choo, E. K. Lee, C. S. Han, D. J. Beebe, G. H. Seong and S. H. Lee, “Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems,” Langmuir, 21, 3738, 2005.
    [40] T. R. Hsu, “MEMS & Microsystems Design and Manufacture,” McGraw-Hill, Boston, 2002.
    [41] D. J. Campbell, K. J. Beckman, C. E. Calderon, P. W. Doolan, R. H. Moore, A. B. Ellis and G. C. Lisensky, “Replication and compression of bulk surface structures with polydimethylsiloxane elastomer,” Journal of Chemical Education, 76, 537, 1999.
    [42] D. Armani, C. Liu and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” IEEE Micro Electro Mechanical Systems, 222, 1999.
    [43] M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, 1063, 1994.

    下載圖示 校內:2012-08-29公開
    校外:2013-08-29公開
    QR CODE