簡易檢索 / 詳目顯示

研究生: 鄭伯忻
Zheng, Po-Xing
論文名稱: 分析A群鏈球菌中熱原性外毒素B之表現時態調控
Characterization of temporal regulation of speB in group A streptococcus
指導教授: 吳俊忠
Wu, Jiunn-Jong
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: A群鏈球菌熱原性外毒素B
外文關鍵詞: speB, group A streptococcus
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A群鏈球菌是人類主要致病菌之一,受其感染後會產生多樣之症狀,從輕微感染到致死性疾病都有機會發生。目前已知A群鏈球菌以嚴謹的調控系統促使在in vitro培養下不同基因會於特定時間點表現。如A群鏈球菌的主要毒力因子,鏈球菌熱源性外毒素B (SpeB),僅表現於stationary phase。在本研究中,我們發現透過添加隔夜培養液,可以誘發A群鏈球菌於log phase表現speB;這顯示A群鏈球菌的speB時態調控 (temporal regulation) 是透過不同時間點的培養液成分差異而達成的。而在隔夜培養液含有的眾多訊息中,葡萄糖不足與培養液酸化可以正向調控speB之表現,但由LuxS與peptide AI-1所調控的群體密度調控系統則不能影響speB的表現。透過proteinase K的處理,本研究也發現A群鏈球菌的膜蛋白質對於speB之表現有關連。利用生物資訊學的分析以及比較基因表現之差異,本研究發現speB的正向調控因子,Rgg,在受隔夜培養液刺激後,表現量也會上升。此外,若於early log phase提升rgg的表現量也可直接引起speB表現,而這現象在具有Rgg調控功能抑制基因,lacD.1,存在的A群鏈球菌中也被發現。綜合前述,本研究推論speB的時態調控系統是藉由不同時態的培養液刺激來掌握,而A群鏈球菌也會利用Rgg統合來自於隔夜培養液的各式刺激,進而開啟speB之表現。

    Group A streptococcus (GAS) is one of the major human pathogens, and it can cause versatile diseases, from self-limited to life-threatening diseases. Gene expression in GAS is tightly controlled in a temporal manner in vitro. Here we showed that streptococcal pyrogenic exotoxin B (speB), which normally expresses in stationary phase, can be induced in log phase under overnight-cultured medium stimulation. It indicates that temporal regulation of speB is dependent on medium composition. Acid and glucose starvation in overnight-cultured medium can contribute speB expression, while LuxS-mediated and peptide AI-1-mediated quorum sensing can not. By proteinase K treatment, we also found that membrane proteins on GAS can also contribute to speB expression. Combining bioinformatic approaches and gene expression analysis, we found that Rgg, the positive regulator of speB, can be induced under overnight-cultured medium stimulation. Over expression of rgg in early log phase can directly lead to speB expression even in the strain with the lacD.1, which can go through protein interaction to trap Rgg and to prevent speB expression in log phase. Thus temporal regulation of speB in GAS can be accomplished by differential environmental stimulation and Rgg can coordinate all input signals to turn on speB expression.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 表及圖目錄 vii 符號與縮寫 viii 緒論 1 材料方法 22 I. 藥品、溶液配方與儀器 22 II. 菌種與質體 22 III. 菌種培養與保存 22 IV. DNA粹取 22 A. 大腸桿菌質體 22 B. A群鏈球菌質體 23 C. A群鏈球菌染色體 23 V. 聚合酶連鎖反應 24 VI. 質體DNA之選殖 24 VII. 勝任細胞的製備 24 VIII. 大腸桿菌細胞轉型作用 25 IX. A群鏈球菌電穿孔轉型作用 25 X. 南方點墨法 25 A. 探針之製作 26 B. 染色體DNA之限制酶切割 26 C. DNA之轉漬 26 D. 雜交反應 26 E. 清洗與呈色作用 27 XI. A群鏈球菌RNA之抽取 27 XII. 北方點墨法 28 XIII. RT-PCR之分析 28 XIV. Real-time RT-PCR 28 XV. 生物資訊分析之工具 29 A. 比較基因體之工具 29 B. 新穎調控因子之搜尋工具 30 XVI. 蛋白質酶活性測試 30 XVII. 培養液置換 30 A. 基本型操作法 30 B. 去除隔夜培養液之蛋白質成分 31 C. 增加隔夜培養液葡萄糖含量 31 D. 更改培養液之pH值 32 E. 去除A群鏈球菌表面蛋白質 32 結果 33 I. 隔夜培養液可刺激log phase的A群鏈球菌表現speB 33 II. LuxS所調控的群體密度調控系統與speB的表現無關 34 III. Peptide AI-1所調控之群體密度調控系統與speB於stationary phase表現無關 36 IV. 於隔夜培養液眾多訊息中的葡萄糖不足具有誘發speB表現的能力 39 V. 培養液酸化是隔夜培養液誘發speB表現的重要因素之一 40 VI. A群鏈球菌的表面蛋白負責偵測來自外界的環境刺激進而誘發speB表現 41 VII. 調控因子 (regulator) 會整合外界環境訊息使speB於stationary phase表現 43 VIII. A群鏈球菌透過Rgg的合成來整合隔夜培養液的刺激並反應至speB的表現 44 IX. lacD.1的基因以及mRNA存在於A群鏈球菌A20與SF370之中 46 討論 48 I. 葡萄糖不足與培養液酸化是控制speB於stationary phase表現的共通機制 48 A. A20與NZ131的隔夜培養液之差異 48 B. LuxS所調控的群體密度調控系統不一定能控制speB的時態調控系統 49 C. 相同的調控因子於不同的菌株中具有不同的調控能力 50 D. 葡萄糖不足與培養液酸化是控制speB表現的共通機制 51 II. 培養液中存在足夠的氨基酸類養分提供一必要的背景讓speB得以表現 51 III. 可能參與外界訊息偵測者的膜蛋白質 52 IV. 由LacD.1與Rgg所組成的調控迴路可最終控制speB的時態調控系統 53 V. Rgg是否扮演A群鏈球菌alternative sigma factor的角色 56 參考文獻 58 圖表 70 附錄 87

    Aziz, R. K., M. J. Pabst, A. Jeng, R. Kansal, D. E. Low, V. Nizet, and M. Kotb. 2004. Invasive M1T1 group A streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol. Microbiol. 51:123-134.
    Bassler, B. L., and R. Losick. 2006. Bacterially speaking. Cell 125:237-246.
    Berge, A., and L. Bjorck. 1995. Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins. J. Biol. Chem. 270:9862-9867.
    Carapetis, J. R., A. C. Steer, E. K. Mulholland, and M. Weber. 2005. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5:685-694.
    Cases, I., and V. de Lorenzo. 1998. Expression systems and physiological control of promoter activity in bacteria. Curr. Opin. Microbiol. 1:303-310.
    Chaussee, M. S., E. R. Phillips, and J. J. Ferretti. 1997. Temporal production of streptococcal erythrogenic toxin B (streptococcal cysteine proteinase) in response to nutrient depletion. Infect. Immun. 65:1956-1959.
    Chaussee, M. S., G. L. Sylva, D. E. Sturdevant, L. M. Smoot, M. R. Graham, R. O. Watson, and J. M. Musser. 2002. Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect. Immun. 70:762-770.
    Chen, C. Y., S. C. Luo, C. F. Kuo, Y. S. Lin, J. J. Wu, M. T. Lin, C. C. Liu, W. Y. Jeng, and W. J. Chuang. 2003. Maturation processing and characterization of streptopain. J. Biol. Chem. 278:17336-17343.
    Chen, Y. Y., C. T. Huang, S. M. Yao, Y. C. Chang, P. W. Shen, C. Y. Chou, and S. Y. Li. 2007. Molecular epidemiology of group A streptococcus causing scarlet fever in northern Taiwan, 2001-2002. Diagn. Microbiol. Infect. Dis. 58:289-295.
    Chiang-Ni, C., C. H. Wang, P. J. Tsai, W. J. Chuang, Y. S. Lin, M. T. Lin, C. C. Liu, and J. J. Wu. 2006. Streptococcal pyrogenic exotoxin B causes mitochondria damage to polymorphonuclear cells preventing phagocytosis of group A streptococcus. Med. Microbiol. Immunol. 195:55-63.
    Chiou, C. S., T. L. Liao, T. H. Wang, H. L. Chang, J. C. Liao, and C. C. Li. 2004. Epidemiology and molecular characterization of Streptococcus pyogenes recovered from scarlet fever patients in central Taiwan from 1996 to 1999. J. Clin. Microbiol. 42:3998-4006.
    Cole, J. N., J. D. McArthur, F. C. McKay, M. L. Sanderson-Smith, A. J. Cork, M. Ranson, M. Rohde, A. Itzek, H. Sun, D. Ginsburg, M. Kotb, V. Nizet, G. S. Chhatwal, and M. J. Walker. 2006. Trigger for group A streptococcal M1T1 invasive disease. Faseb. J. 20:1745-1747.
    Collin, M., and A. Olsen. 2000. Generation of a mature streptococcal cysteine proteinase is dependent on cell wall-anchored M1 protein. Mol. Microbiol. 36:1306-1318.
    Collin, M., and A. Olsen. 2001a. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. Embo J 20:3046-3055.
    Collin, M., and A. Olsen. 2001b. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect. Immun. 69:7187-7189.
    Cunningham, M. W. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13:470-511.
    Dalton, T. L., and J. R. Scott. 2004. CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes. J. Bacteriol. 186:3928-3937.
    de Jong, A., S. A. van Hijum, J. J. Bijlsma, J. Kok, and O. P. Kuipers. 2006. BAGEL: a web-based bacteriocin genome mining tool. Nucleic. Acids. Res. 34:W273-279.
    Degnan, B. A., J. M. Palmer, T. Robson, C. E. Jones, M. Fischer, M. Glanville, G. D. Mellor, A. G. Diamond, M. A. Kehoe, and J. A. Goodacre. 1998. Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infect. Immun. 66:3050-3058.
    Degnan, B. A., M. C. Fontaine, A. H. Doebereiner, J. J. Lee, P. Mastroeni, G. Dougan, J. A. Goodacre, and M. A. Kehoe. 2000. Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect. Immun. 68:2441-2448.
    Dirix, G., P. Monsieurs, B. Dombrecht, R. Daniels, K. Marchal, J. Vanderleyden, and J. Michiels. 2004. Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters. Peptides 25:1425-1440.
    Dmitriev, A. V., E. J. McDowell, K. V. Kappeler, M. A. Chaussee, L. D. Rieck, and M. S. Chaussee. 2006. The Rgg regulator of Streptococcus pyogenes influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. J. Bacteriol. 188:7230-7241.
    Eran, Y., Y. Getter, M. Baruch, I. Belotserkovsky, G. Padalon, I. Mishalian, A. Podbielski, B. Kreikemeyer, and E. Hanski. 2007. Transcriptional regulation of the sil locus by the SilCR signalling peptide and its implications on group A streptococcus virulence. Mol. Microbiol. 63:1209-1222.
    Eriksson, A., and M. Norgren. 2003. Cleavage of antigen-bound immunoglobulin G by SpeB contributes to streptococcal persistence in opsonizing blood. Infect. Immun. 71:211-217.
    Even, S., N. D. Lindley, P. Loubiere, and M. Cocaign-Bousquet. 2002. Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic and energetic constraints. Mol. Microbiol. 45:1143-1152.
    Ferretti, J. J., W. M. McShan, D. Ajdic, D. J. Savic, G. Savic, K. Lyon, C. Primeaux, S. Sezate, A. N. Suvorov, S. Kenton, H. S. Lai, S. P. Lin, Y. Qian, H. G. Jia, F. Z. Najar, Q. Ren, H. Zhu, L. Song, J. White, X. Yuan, S. W. Clifton, B. A. Roe, and R. McLaughlin. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. U. S. A. 98:4658-4663.
    Finn, R. D., J. Mistry, B. Schuster-Bockler, S. Griffiths-Jones, V. Hollich, T. Lassmann, S. Moxon, M. Marshall, A. Khanna, R. Durbin, S. R. Eddy, E. L. Sonnhammer, and A. Bateman. 2006. Pfam: clans, web tools and services. Nucleic. Acids. Res. 34:D247-251.
    Foster, J. W. 2004. Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol. 2:898-907.
    Graham, M. R., L. M. Smoot, C. A. Migliaccio, K. Virtaneva, D. E. Sturdevant, S. F. Porcella, M. J. Federle, G. J. Adams, J. R. Scott, and J. M. Musser. 2002. Virulence control in group A streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. U. S. A. 99:13855-13860.
    Graham, M. R., K. Virtaneva, S. F. Porcella, W. T. Barry, B. B. Gowen, C. R. Johnson, F. A. Wright, and J. M. Musser. 2005. Group A streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am. J. Pathol. 166:455-465.
    Granok, A. B., D. Parsonage, R. P. Ross, and M. G. Caparon. 2000. The RofA binding site in Streptococcus pyogenes is utilized in multiple transcriptional pathways. J. Bacteriol. 182:1529-1540.
    Hauser, A. R., D. L. Stevens, E. L. Kaplan, and P. M. Schlievert. 1991. Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes isolates associated with toxic shock-like syndrome. J. Clin. Microbiol. 29:1562-1567.
    Hengge-Aronis, R. 1999. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2:148-152.
    Henke, J. M., and B. L. Bassler. 2004. Bacterial social engagements. Trends. Cell. Biol. 14:648-656.
    Hidalgo-Grass, C., M. Ravins, M. Dan-Goor, J. Jaffe, A. E. Moses, and E. Hanski. 2002. A locus of group A streptococcus involved in invasive disease and DNA transfer. Mol. Microbiol. 46:87-99.
    Hsueh, P. R., J. M. Shyr, and J. J. Wu. 2005. Decreased erythromycin use after antimicrobial reimbursement restriction for undocumented bacterial upper respiratory tract infections significantly reduced erythromycin resistance in Streptococcus pyogenes in Taiwan. Clin. Infect. Dis. 40:903-905.
    Hsueh, P. R., J. M. Shyr, and J. J. Wu. 2006. Changes in macrolide resistance among respiratory pathogens after decreased erythromycin consumption in Taiwan. Clin. Microbiol. Infect. 12:296-298.
    Hynes, W. L., and J. R. Tagg. 1985. A simple plate assay for detection of group A streptococcus proteinase. J. Microbiol. Methods. 4:25-31.
    Kagawa, T. F., W. O'Toole P, and J. C. Cooney. 2005. SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Mol. Microbiol. 57:650-666.
    Kamezawa, Y., T. Nakahara, S. Nakano, Y. Abe, J. Nozaki-Renard, and T. Isono. 1997. Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect. Immun. 65:3828-3833.
    Kanaoka, M., T. Negoro, C. Kawanaka, H. Agui, and S. Nabeshima. 1991. Streptococcal antitumor protein: expression in Escherichia coli cells and properties of the recombinant protein. Agric. Biol. Chem. 55:743-750.
    Kao, C. H., P. Y. Chen, F. L. Huang, C. W. Chen, C. S. Chi, Y. H. Lin, C. Y. Shih, B. S. Hu, C. R. Li, J. S. Ma, Y. J. Lau, K. C. Lu, and H. W. Yu. 2005. Clinical and genetic analysis of invasive and non-invasive group A streptococcal infections in central Taiwan. J. Microbiol. Immunol. Infect. 38:105-111.
    Kapur, V., M. W. Majesky, L. L. Li, R. A. Black, and J. M. Musser. 1993a. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. U. S. A. 90:7676-7680.
    Kapur, V., S. Topouzis, M. W. Majesky, L. L. Li, M. R. Hamrick, R. J. Hamill, J. M. Patti, and J. M. Musser. 1993b. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15:327-346.
    Kleerebezem, M. 2004. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25:1405-1414.
    Kotb, M. 1995. Bacterial pyrogenic exotoxins as superantigens. Clin. Microbiol. Rev. 8:411-426.
    Kreikemeyer, B., M. D. Boyle, B. A. Buttaro, M. Heinemann, and A. Podbielski. 2001. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol. Microbiol. 39:392-406.
    Kreikemeyer, B., S. Beckert, A. Braun-Kiewnick, and A. Podbielski. 2002. Group A streptococcal RofA-type global regulators exhibit a strain-specific genomic presence and regulation pattern. Microbiology. 148:1501-1511.
    Kreikemeyer, B., K. S. McIver, and A. Podbielski. 2003. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends. Microbiol. 11:224-232.
    Kuo, C. F., J. J. Wu, K. Y. Lin, P. J. Tsai, S. C. Lee, Y. T. Jin, H. Y. Lei, and Y. S. Lin. 1998. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66:3931-3935.
    Kuo, C. F., J. J. Wu, P. J. Tsai, F. J. Kao, H. Y. Lei, M. T. Lin, and Y. S. Lin. 1999. Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67:126-130.
    Kuo, C. F., Y. H. Luo, H. Y. Lin, K. J. Huang, J. J. Wu, H. Y. Lei, M. T. Lin, W. J. Chuang, C. C. Liu, Y. T. Jin, and Y. S. Lin. 2004. Histopathologic changes in kidney and liver correlate with streptococcal pyrogenic exotoxin B production in the mouse model of group A streptococcal infection. Microb. Pathog. 36:273-285.
    Lancefield, R. C. 1962. Current knowledge of type-specific M antigens of group A streptococci. J. Immunol. 89:307-313.
    Lazazzera, B. A. 2001. The intracellular function of extracellular signaling peptides. Peptides 22:1519-1527.
    Levin, J. C., and M. R. Wessels. 1998. Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A streptococcus. Mol. Microbiol. 30:209-219.
    Liu, Y. F., C. H. Wang, R. P. Janapatla, H. M. Fu, H. M. Wu, and J. J. Wu. 2007. Presence of plasmid pA15 correlates with prevalence of constitutive MLSB resistance in group A streptococcal isolates at a university hospital in southern Taiwan. J. Antimicrob. Chemother. 59:1167-1170.
    Lonetto, M., M. Gribskov, and C. A. Gross. 1992. The sigma 70 family: sequence conservation and evolutionary relationships. J. Bacteriol. 174:3843-3849.
    Loughman, J. A., and M. Caparon. 2006a. Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. J. Bacteriol. 188:399-408.
    Loughman, J. A., and M. G. Caparon. 2006b. A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes. Embo J. 25:5414-5422.
    Loughman, J. A., and M. G. Caparon. 2007. Comparative functional analysis of the lac operons in Streptococcus pyogenes. Mol. Microbiol. 64:269-280.
    Lukomski, S., K. Nakashima, I. Abdi, V. J. Cipriano, B. J. Shelvin, E. A. Graviss, and J. M. Musser. 2001. Identification and characterization of a second extracellular collagen-like protein made by group A streptococcus: control of production at the level of translation. Infect. Immun. 69:1729-1738.
    Lyon, W. R., C. M. Gibson, and M. G. Caparon. 1998. A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. Embo J. 17:6263-6275.
    Lyon, W. R., J. C. Madden, J. C. Levin, J. L. Stein, and M. G. Caparon. 2001. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol. Microbiol. 42:145-157.
    Lyon, W. R., and M. G. Caparon. 2003. Trigger factor-mediated prolyl isomerization influences maturation of the Streptococcus pyogenes cysteine protease. J. Bacteriol. 185:3661-3667.
    Lyon, W. R., and M. G. Caparon. 2004. Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect. Immun. 72:1618-1625.
    Ma, Y., A. E. Bryant, D. B. Salmi, S. M. Hayes-Schroer, E. McIndoo, M. J. Aldape, and D. L. Stevens. 2006. Identification and characterization of bicistronic speB and prsA gene expression in the group A streptococcus. J. Bacteriol. 188:7626-7634.
    Magnusson, L. U., A. Farewell, and T. Nystrom. 2005. ppGpp: a global regulator in Escherichia coli. Trends. Microbiol. 13:236-242.
    Malke, H., K. Steiner, W. M. McShan, and J. J. Ferretti. 2006. Linking the nutritional status of Streptococcus pyogenes to alteration of transcriptional gene expression: the action of CodY and RelA. Int. J. Med. Microbiol. 296:259-275.
    Malke, H., and J. J. Ferretti. 2007. CodY-affected transcriptional gene expression of Streptococcus pyogenes during growth in human blood. J. Med. Microbiol. 56:707-714.
    Mangold, M., M. Siller, B. Roppenser, B. J. Vlaminckx, T. A. Penfound, R. Klein, R. Novak, R. P. Novick, and E. Charpentier. 2004. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol. 53:1515-1527.
    Markowitz, V. M., F. Korzeniewski, K. Palaniappan, E. Szeto, G. Werner, A. Padki, X. Zhao, I. Dubchak, P. Hugenholtz, I. Anderson, A. Lykidis, K. Mavromatis, N. Ivanova, and N. C. Kyrpides. 2006. The integrated microbial genomes (IMG) system. Nucleic. Acids. Res. 34:D344-348.
    Marouni, M. J., and S. Sela. 2003. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infect. Immun. 71:5633-5639.
    Marouni, M. J., E. Ziomek, and S. Sela. 2003. Influence of group A streptococcal acid glycoprotein on expression of major virulence factors and internalization by epithelial cells. Microb. Pathog. 35:63-72.
    Miller, A. A., N. C. Engleberg, and V. J. DiRita. 2001. Repression of virulence genes by phosphorylation-dependent oligomerization of CsrR at target promoters in S. pyogenes. Mol. Microbiol. 40:976-990.
    Molinari, G., M. Rohde, S. R. Talay, G. S. Chhatwal, S. Beckert, and A. Podbielski. 2001. The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol. Microbiol. 40:99-114.
    Mulder, N. J., R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman, D. Binns, P. Bork, V. Buillard, L. Cerutti, R. Copley, E. Courcelle, U. Das, L. Daugherty, M. Dibley, R. Finn, W. Fleischmann, J. Gough, D. Haft, N. Hulo, S. Hunter, D. Kahn, A. Kanapin, A. Kejariwal, A. Labarga, P. S. Langendijk-Genevaux, D. Lonsdale, R. Lopez, I. Letunic, M. Madera, J. Maslen, C. McAnulla, J. McDowall, J. Mistry, A. Mitchell, A. N. Nikolskaya, S. Orchard, C. Orengo, R. Petryszak, J. D. Selengut, C. J. Sigrist, P. D. Thomas, F. Valentin, D. Wilson, C. H. Wu, and C. Yeats. 2007. New developments in the InterPro database. Nucleic. Acids. Res. 35:D224-228.
    Murray, D. L., D. H. Ohlendorf, and P. M. Schlievert. 1995. Staphylococcal and streptococcal superantigens: their role in human disease. ASM News 61:229-235.
    Musser, J. M., A. R. Hauser, M. H. Kim, P. M. Schlievert, K. Nelson, and R. K. Selander. 1991. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc. Natl. Acad. Sci. U. S. A. 88:2668-2672.
    Nagamune, H., K. Ohkura, and H. Ohkuni. 2005. Molecular basis of group A streptococcal pyrogenic exotoxin B. J. Infect. Chemother. 11:1-8.
    Nakamura, T., T. Hasegawa, K. Torii, Y. Hasegawa, K. Shimokata, and M. Ohta. 2004. Two-dimensional gel electrophoresis analysis of the abundance of virulent exoproteins of group A streptococcus caused by environmental changes. Arch. Microbiol. 181:74-81.
    Neely, M. N., W. R. Lyon, D. L. Runft, and M. Caparon. 2003. Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes. J. Bacteriol. 185:5166-5174.
    Nes, I. F., and O. Johnsborg. 2004. Exploration of antimicrobial potential in LAB by genomics. Curr. Opin. Biotechnol. 15:100-104.
    Nooh, M. M., R. K. Aziz, M. Kotb, A. Eroshkin, W. J. Chuang, T. Proft, and R. Kansal. 2006. Streptococcal mitogenic exotoxin, SmeZ, is the most susceptible M1T1 streptococcal superantigen to degradation by the streptococcal cysteine protease, SpeB. J. Biol. Chem. 281:35281-35288.
    Norrby-Teglund, A., S. E. Holm, and M. Norgren. 1994a. Detection and nucleotide sequence analysis of the speC gene in Swedish clinical group A streptococcal isolates. J. Clin. Microbiol. 32:705-709.
    Norrby-Teglund, A., D. Newton, M. Kotb, S. E. Holm, and M. Norgren. 1994b. Superantigenic properties of the group A streptococcal exotoxin SpeF (MF). Infect. Immun. 62:5227-5233.
    Norrby-Teglund, A., M. Norgren, S. E. Holm, U. Andersson, and J. Andersson. 1994c. Similar cytokine induction profiles of a novel streptococcal exotoxin, MF, and pyrogenic exotoxins A and B. Infect. Immun. 62:3731-3738.
    Norrby-Teglund, A., K. Pauksens, S. E. Holm, and M. Norgren. 1994d. Relation between low capacity of human sera to inhibit streptococcal mitogens and serious manifestation of disease. J. Infect. Dis. 170:585-591.
    Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48:1429-1449.
    Nyberg, P., M. Rasmussen, U. Von Pawel-Rammingen, and L. Bjorck. 2004. SpeB modulates fibronectin-dependent internalization of Streptococcus pyogenes by efficient proteolysis of cell-wall-anchored protein F1. Microbiology 150:1559-1569.
    Opdyke, J. A., J. R. Scott, and C. P. Moran, Jr. 2001. A secondary RNA polymerase sigma factor from Streptococcus pyogenes. Mol. Microbiol. 42:495-502.
    Opdyke, J. A., J. R. Scott, and C. P. Moran, Jr. 2003. Expression of the secondary sigma factor sigmaX in Streptococcus pyogenes is restricted at two levels. J. Bacteriol. 185:4291-4297.
    Podbielski, A., A. Flosdorff, and J. Weber-Heynemann. 1995. The group A streptococcal virR49 gene controls expression of four structural vir regulon genes. Infect. Immun. 63:9-20.
    Podbielski, A., B. Pohl, M. Woischnik, C. Korner, K. H. Schmidt, E. Rozdzinski, and B. A. Leonard. 1996a. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (opp) and its effect on cysteine protease production. Mol. Microbiol. 21:1087-1099.
    Podbielski, A., M. Woischnik, B. Pohl, and K. H. Schmidt. 1996b. What is the size of the group A streptococcal vir regulon? The Mga regulator affects expression of secreted and surface virulence factors. Med. Microbiol. Immunol. 185:171-181.
    Podbielski, A., I. Zarges, A. Flosdorff, and J. Weber-Heynemann. 1996c. Molecular characterization of a major serotype M49 group A streptococcal DNase gene (sdaD). Infect. Immun. 64:5349-5356.
    Podbielski, A., and B. A. Leonard. 1998. The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Mol. Microbiol. 28:1323-1334.
    Podbielski, A., M. Woischnik, B. Kreikemeyer, K. Bettenbrock, and B. A. Buttaro. 1999a. Cysteine protease SpeB expression in group A streptococci is influenced by the nutritional environment but SpeB does not contribute to obtaining essential nutrients. Med. Microbiol. Immunol. (Berl.) 188:99-109.
    Podbielski, A., M. Woischnik, B. A. Leonard, and K. H. Schmidt. 1999b. Characterization of nra, a global negative regulator gene in group A streptococci. Mol. Microbiol. 31:1051-1064.
    Reda, K. B., V. Kapur, J. A. Mollick, J. G. Lamphear, J. M. Musser, and R. R. Rich. 1994. Molecular characterization and phylogenetic distribution of the streptococcal superantigen gene (ssa) from Streptococcus pyogenes. Infect. Immun. 62:1867-1874.
    Reid, S. D., A. G. Montgomery, and J. M. Musser. 2004. Identification of srv, a PrfA-like regulator of group A streptococcus that influences virulence. Infect. Immun. 72:1799-1803.
    Reid, S. D., M. S. Chaussee, C. D. Doern, M. A. Chaussee, A. G. Montgomery, D. E. Sturdevant, and J. M. Musser. 2006. Inactivation of the group A streptococcus regulator srv results in chromosome wide reduction of transcript levels, and changes in extracellular levels of Sic and SpeB. FEMS Immunol. Med. Microbiol. 48:283-292.
    Ribardo, D. A., and K. S. McIver. 2006. Defining the Mga regulon: Comparative transcriptome analysis reveals both direct and indirect regulation by Mga in the group A streptococcus. Mol. Microbiol. 62:491-508.
    Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning, second ed. Cold Spring Harbor Laboratory Press, New York.
    Schmidtchen, A., I. M. Frick, E. Andersson, H. Tapper, and L. Bjorck. 2002. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46:157-168.
    Schwartz, B., R. R. Facklam, and R. F. Breiman. 1990. Changing epidemiology of group A streptococcal infection in the USA. Lancet. 336:1167-1171.
    Shelburne, S. A., 3rd, C. Granville, M. Tokuyama, I. Sitkiewicz, P. Patel, and J. M. Musser. 2005a. Growth characteristics of and virulence factor production by group A streptococcus during cultivation in human saliva. Infect. Immun. 73:4723-4731.
    Shelburne, S. A., 3rd, P. Sumby, I. Sitkiewicz, C. Granville, F. R. DeLeo, and J. M. Musser. 2005b. Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. Proc. Natl. Acad. Sci. U. S. A. 102:16037-16042.
    Simon, D., and J. J. Ferretti. 1991. Electrotransformation of Streptococcus pyogenes with plasmid and linear DNA. FEMS Microbiol. Lett. 66:219-224.
    Sitkiewicz, I., and J. M. Musser. 2006. Expression microarray and mouse virulence analysis of four conserved two-component gene regulatory systems in group a streptococcus. Infect. Immun. 74:1339-1351.
    Sonenshein, A. L. 2005. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol. 8:203-207.
    Spiess, C., A. Beil, and M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339-347.
    Steiner, K., and H. Malke. 2000. Life in protein-rich environments: the relA-independent response of Streptococcus pyogenes to amino acid starvation. Mol. Microbiol. 38:1004-1016.
    Steiner, K., and H. Malke. 2001. relA-Independent amino acid starvation response network of Streptococcus pyogenes. J. Bacteriol. 183:7354-7364.
    Stevens, D. L., M. H. Tanner, J. Winship, R. Swarts, K. M. Ries, P. M. Schlievert, and E. Kaplan. 1989. Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N. Engl. J. Med. 321:1-7.
    Stevens, D. L. 1992. Invasive group A streptococcus infections. Clin. Infect. Dis. 14:2-11.
    Stollerman, G. H. 1991. Rheumatogenic streptococci and autoimmunity. Clin. Immunol. Immunopathol. 61:131-142.
    Storz, G., and R. Hengge-Aronis. 2000. Bacterial stress responses. American society of Microbiology, Washington, DC.
    Trainor, V. C., R. K. Udy, P. J. Bremer, and G. M. Cook. 1999. Survival of Streptococcus pyogenes under stress and starvation. FEMS Microbiol. Lett. 176:421-428.
    Tsai, P. J., C. F. Kuo, K. Y. Lin, Y. S. Lin, H. Y. Lei, F. F. Chen, J. R. Wang, and J. J. Wu. 1998. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun. 66:1460-1466.
    Uchiyama, T., X. J. Yan, K. Imanishi, and J. Yagi. 1994. Bacterial superantigens--mechanism of T cell activation by the superantigens and their role in the pathogenesis of infectious diseases. Microbiol. Immunol. 38:245-256.
    Unnikrishnan, M., J. Cohen, and S. Sriskandan. 1999. Growth-phase-dependent expression of virulence factors in an M1T1 clinical isolate of Streptococcus pyogenes. Infect. Immun. 67:5495-5499.
    Upton, M., J. R. Tagg, P. Wescombe, and H. F. Jenkinson. 2001. Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J. Bacteriol. 183:3931-3938.
    van de Guchte, M., P. Serror, C. Chervaux, T. Smokvina, S. D. Ehrlich, and E. Maguin. 2002. Stress responses in lactic acid bacteria. Antonie. Van. Leeuwenhoek. 82:187-216.
    Voyich, J. M., D. E. Sturdevant, K. R. Braughton, S. D. Kobayashi, B. Lei, K. Virtaneva, D. W. Dorward, J. M. Musser, and F. R. DeLeo. 2003. Genome-wide protective response used by group A streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. U. S. A. 100:1996-2001.
    Waters, C. M., and B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21:319-346.
    Woodbury, R. L., X. Wang, and C. P. Moran, Jr. 2006. Sigma X induces competence gene expression in Streptococcus pyogenes. Res. Microbiol. 157:851-856.
    Xavier, K. B., and B. L. Bassler. 2005. Interference with AI-2-mediated bacterial cell-cell communication. Nature 437:750-753.
    Yan, J. J., C. C. Liu, W. C. Ko, S. Y. Hsu, H. M. Wu, Y. S. Lin, M. T. Lin, W. J. Chuang, and J. J. Wu. 2003. Molecular analysis of group A streptococcal isolates associated with scarlet fever in southern Taiwan between 1993 and 2002. J. Clin. Microbiol. 41:4858-4861.
    Yoshida, J., S. Takamura, and S. Suzuki. 1987. Cell growth-inhibitory action of SAGP, an antitumor glycoprotein from Streptococcus pyogenes (Su strain). Jpn. J. Pharmacol. 45:143-147.
    Yoshida, J., S. Takamura, and S. Suzuki. 1989. A simplified method for purification of an antitumor acidic glycoprotein from Streptococcus pyogenes (Su strain) by immunoadsorbent chromatography. J. Antibiot. (Tokyo) 42:448-453.
    Yoshida, J., S. Takamura, and S. Suzuki. 1991. Antitumor action of an acidic glycoprotein (SAGP) from Streptococcus pyogenes in mice. Biotherapy 3:331-336.
    Yoshida, J., S. Takamura, and S. Suzuki. 1994. Evidence for the involvement of sulfhydryl groups in the expression of antitumor activity of streptococcal acid glycoprotein (SAGP) purified from crude extract of Streptococcus pyogenes. Anticancer Res. 14:1833-1837.
    Yoshida, J., S. Takamura, S. Suzuki, and M. Nishio. 1996. Streptococcal glycoprotein-induced tumour cell growth inhibition involves the modulation of a pertussis toxin-sensitive G protein. Br. J. Cancer. 73:917-923.
    Yoshida, J., S. Takamura, and M. Nishio. 1998. Characterization of a streptococcal antitumor glycoprotein (SAGP). Life Sci. 62:1043-1053.
    Yoshida, J., S. Takamura, T. Ishibashi, and M. Nishio. 1999. Antiproliferative and apoptosis-inducing effects of an antitumor glycoprotein from Streptococcus pyogenes. Anticancer Res. 19:1865-1871.
    Yoshida, J., T. Ishibashi, and M. Nishio. 2001. Growth-inhibitory effect of a streptococcal antitumor glycoprotein on human epidermoid carcinoma A431 cells: involvement of dephosphorylation of epidermal growth factor receptor. Cancer Res. 61:6151-6157.
    曾鈺晶 2005. Effects of oligopeptide permease in group A streptococcal adhesion. 國立成功大學醫學檢驗生物技術研究所碩士論文。

    無法下載圖示 校內:2105-08-16公開
    校外:2105-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE