簡易檢索 / 詳目顯示

研究生: 陳子騰
Chen, Tzu-Teng
論文名稱: 添加劑對鋁氫化鈉吸氫及放氫性質影響之研究
Effect of Additives on Dehydrogenation and Rehydrogenation Behavior of Sodium Alumium Hydride
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 101
中文關鍵詞: 鋁氫化鈉多壁奈米碳管吸氫反應放氫反應X光繞射氫化鎂
外文關鍵詞: sodium aluminum hydride, multi-walled carbon nanotubes, in-situ synchrotron X-ray diffraction
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,多壁奈米碳管首先例用機械球磨法摻雜於市售鋁氫化鈉粉末中並使用高壓微天平以不同的熱處理方式研究其熱放氫性質及儲氫量,結果顯示隨著多壁奈米碳管摻雜量的增加將可大幅降低鋁氫化鈉之起始放氫溫度,最低可至80 ºC。臨場粉末X光繞射用以研究市售鋁氫化鈉及摻雜碳材料之複合材料隨著溫度上升的相變化反應,結果可觀察到鋁氫化鈉的放氫反應機制會因為多壁奈米碳管的摻雜而改變,使得起始放氫溫度下降以及放氫動力學性質的提升。

    鋁氫化鋁-多壁奈米碳管複合材料之吸氫性質藉由高壓微天平亦可被量測,其可逆性會隨著碳管摻雜量的增加而上升,其中以50 wt%摻雜條件之可逆性最佳,在1000 psi/140 ºC/6小時的充氫條件並且再次升溫放氫下,2.1 wt%的氫氣會再次的釋放,而如果將充氫時間延長至12小時,大部份升溫後的粉末成分將逆反應回到鋁氫化鈉相。

    氫化鎂為一金屬氫化物在本研究中亦做為添加物與鋁氫化鈉進行球磨混合,此類複合材料將大幅提升整體的儲氫量最多可至4.5 wt%,升溫後的反應產物如NaMgH3及Mg17Al12意謂著鋁氫化鈉與氫化鎂之間有著交互的反應,因此除了熱放氫特性外,此複合材料之反應機制也將在文中提出。

    The effect of multi-walled carbon nanotubes (MWCNTs) addition on the desorption behavior of NaAlH4 (sodium aluminum hydride) is investigated using high-pressure thermal gravimetric analysis (HPTGA) and in-situ synchrotron X-ray diffraction (in-situ synchrotron XRD) technique. The HPTGA results show that the addition of MWCNTs facilitates dehydrogenation of NaAlH4 by lowering the first-step dehydrogenation temperature to 80 ºC. In-situ synchrotron XRD analysis demonstrates that the dehydrogenation pathway can be modified by the addition of MWCNTs which resulting in an enhanced hydrogen desorption rate and reduced desorption temperature.

    The adsorption behavior of NaAlH4-MWCNTs systems has also been studied. With 50 wt% MWCNTs addition, 2.1 wt% hydrogen can be reversed under hydrogen recharge condition at 1000 psi/140 ºC for 6 h. If recharge time extended to 12 h, most of the as-heated NaAlH4 will transform back to NaAlH4 phase.

    MgH2 is also selected as an additive and admixed with NaAlH4. The hydrogen capacity in these composite systems can enhance to more than 4.5 wt%. The compounds such as NaMgH3 and Mg17Al12 appeared during heating which indicates the mutual reactions between NaAlH4 and MgH2. The reaction mechanisms of these composite systems have also been proposed according to the XRD and TGA results.

    Contents Abstract (English) ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Ⅰ Abstract (Chinese) ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Ⅲ Acknowledge˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Ⅳ Contents˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Ⅵ Lists of Tables˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Ⅸ Lists of Figures˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Ⅹ Chapter 1: Introduction˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙1 1-1 Development of hydrogen energy˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙1 1-2 Scope of the investigation˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙3 Chapter 2: Literature reviews˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙5 2-1 Modes of hydrogen storage˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙5 2-1-1 Compressed hydrogen gas˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙5 2-1-2 Liquified hydrogen˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙6 2-1-3 Adsorption materials˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙6 2-1-4 Metal hydrides˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙7 2-2 Categorization of metal hydrides˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙8 2-2-1 Conventional metal hydrides˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙8 2-2-2 Intermetallic compounds˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙8 2-2-3 Complex metal hydrides˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙8 2-3 Magnesium hydride˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙9 2-3-1 MgH2 with Catalytic Additives˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙11 2-4 Sodium aluminum hydride˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙12 2-4-1 NaAlH4 catalyzed by Transition metal or metal compound˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙14 2-4-2 NaAlH4 catalyzed by Carbon materials˙˙˙˙˙˙˙˙˙˙˙˙˙˙16 2-4-3 Complex metal hydride with Metal hydride addition˙18 Chapter 3: Experimental˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙37 3-1 Sample preparation˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙37 3-1-1 Sample preparation by mechanical mixing of multi-walled carbon nanotubes (MWCNTs) and sodium aluminum hydride˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙37 3-1-2 Sample preparation by mechanical mixing of magnesium hydride (MgH2) and sodium aluminum hydride ˙˙˙˙˙˙˙˙˙˙˙˙˙37 3-2 Materials characterization˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙38 3-3 Microstructure examination˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙39 3-4 Thermal dehydrogenation behavior˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙39 3-5 Thermal rehydrogenation and cyclic performance˙˙˙˙˙˙40 Chapter 4: Result and discussion˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙43 4-1 Materials characteristics of the MWCNTs-admixed sodium aluminum hydride ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙43 4-2 Thermal dehydrogenation behavior of the MWCNTs-admixed sodium aluminum hydride˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙44 4-3 In-situ synchrotron X-ray diffraction analysis˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙46 4-4 Thermal rehydrogenation behavior and cyclic performance of the MWCNTs-admixed sodium aluminum hydride˙˙˙˙˙˙˙˙˙˙˙52 4-5 The effect of Ball-milling process on MgH2 dehydrogenation behavior˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙56 4-6 The synergistic effect of MgH2 on the dehydrogenation behavior of NaAlH4˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙58 Chapter 5: Conclusions˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙92 Reference˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙95 Lists of Tables Table 1-1 New High Level Storage System Target for Light-Duty Vehicles˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙4 Table 2-1 The DOE targets for hydrogen storage˙˙˙˙˙˙˙˙˙˙21 Table 2-2 Hydrogen storage properties of intermetallic compounds˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙22 Table 2-3 Hydrogen storage properties of selected high-capacity hydrides ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙23 Table2-4Crystal structure and hydrogenation/dehydrogenation properties of alanates ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙24 Lists of Figures Figure 2-1 Hydrogen storage capacity of different methods˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙25 Figure 2-2 Equilibrium phase diagram of hydrogen˙˙˙˙˙˙˙˙26 Figure 2-3 Schematic diagram showing adsorption of hydrogen on a high surface area material˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙27 Figure 2-4 The crystal structure of b-MgH2˙˙˙˙˙˙˙˙˙˙˙˙˙˙28 Figure 2-5 Desorption kinetic curves at various temperatures 350, 375, 400, and 420°C under initial hydrogen pressure of 0.1 MPa of the as-received MgH2 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙29 Figure 2-6 DSC traces of MgH2 powder milled continuously for 20 and 100 h under the IMP68 mode in argon˙˙˙˙˙˙˙˙˙˙˙˙˙˙30 Figure 2-7 (a) Equilibrium structure of NaAlH4 and (b) each Na atom is connected to eight [AlH4]− tetrahedra in a distorted square antiprism˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙31 Figure 2-8 Cyclic stability tests for NaAlH4 doped with Ti(OBu) and Fe(OEt) ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙32 Figure 2-9 Equilibrium pressures for the decomposition of NaAlH4 and Na3AlH6 in dependence on temperature˙˙˙˙˙˙˙˙˙33 Figure 2-10 TG profiles for as-milled pristine LiAlH4 and MgH2, and MgH2–LiAlH4 composites (in mole ratio of 1:1, 2:1 and 4:1), with a heating rate of 10ºCmin−1˙˙˙˙˙˙˙˙˙˙˙˙˙˙34 Figure 2-11 XRD patterns for (a) MgH2–Al (1:1), (b) MgH2–LiH (1:1), (c) MgH2–LiH–Al (1:1:1) and MgH2–LiAlH4 (1:1) composites after dehydrogenation at 500ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙35 Figure 2-12 Isothermal re-hydrogenation kinetics for MgH2–LiAlH4 composites (in mole ratio of 1:1, 2:1 and 4:1) at 400ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙36 Figure 3-1 The schematic diagram of In-situ synchrotron X-ray diffraction experiment˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙42 Figure 4-1 XRD patterns of as-received NaAlH4 and 10, 20 and 50 wt% MWCNTs-admixed NaAlH4 after mechanical milling˙˙˙65 Figure 4-2 SEM micrographs of (a) MWCNTs, (b) NaAlH4, (c) 50 wt% MWCNTs-admixed NaAlH, and (d) high magnification of (c) ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙66 Figure 4-3 TGA results of the as-received NaAlH4 and those of 10, 20, 50wt% MWCNTs-admixed NaAlH4, heated from room temperature to 330ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ 67 Figure 4-4 TGA results of the as-received NaAlH4 and those of 10, 20 and 50 wt% MWCNTs-admixed NaAlH4 heated at 160 ºC for 20 hours˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ 68 Figure 4-5 (a) SEM micrograph of 50 wt% MWCNTs-admixed NaAlH4 after heat treatment to 330°C, (b) high magnification of (a)˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙69 Figure 4-6 (a) In-situ synchrotron XRD patterns of the as-received NaAlH4 heated from room temperature to 330°C; (b) variation of the peak intensity with temperature for the major species appeared during heating˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙70 Figure 4-7 (a) In-situ synchrotron XRD patterns of the 20 wt% MWCNTs-admixed NaAlH4 heated from room temperature to 330°C; (b) variation of the peak intensity with temperature for the major species appeared during heating˙˙˙˙˙˙˙˙˙˙˙72 Figure 4-8 (a) In-situ synchrotron XRD results of the 20 wt% activatedcarbon-admixed NaAlH4 heated from room temperature to 330°C; (b) variation of the strongest peak intensity with temperature for the major species appeared during thermal treatment˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙74 Figure 4-9 TGA results of second time dehydrogenation of the as - received and those of 10, 20 and 50 wt% MWCNTs-admixed NaAlH4˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙76 Figure 4-10 XRD result of (a) 20 wt% MWCNTs-admixed NaAlH4, (b) 20 wt% MWCNTs-admixed NaAlH4 after 1st dehydrogenation and rehydrogenated under 1000psi/140oC/6h, (c) after 2nd dehydrogenation test˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙77 Figure 4-11 TGA results of second time dehydrogenation of the 50 wt% MWCNTs-admixed NaAlH4 under different recharge temperature (100, 140, 180ºC) ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙78 Figure 4-12 TGA results of second time dehydrogenation of the 50 wt% MWCNTs-admixed NaAlH4 under different recharge pressure (800, 1000, 1200 psi) ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙79 Figure 4-13 TGA results of second time dehydrogenation of the 50 wt% MWCNTs-admixed NaAlH4 under different recharge time (6, 12 h) ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙80 Figure 4-14 XRD result of (a) 20 wt% MWCNTs-admixed NaAlH4, (b) 20 wt% MWCNTs-admixed NaAlH4 after 1st dehydrogenation and rehydrogenated under 1000psi/140oC/6h, (c) after 2nd dehydrogenation test˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙81 Figure 4-15 TGA results of 2nd, 3rd, 4th time dehydrogenation dehydrogenation of the 50 wt% MWCNTs-admixed NaAlH4˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙82 Figure 4-16 XRD patterns of the as-received MgH2 and MgH2 under 1, 2, 3 h mechanical milling˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙83 Figure 4-17 SEM micrographs of (a) as-received MgH2, and MgH2 under (b) 1 (c) 2 (d) 3 h mechanical milling˙˙˙˙˙˙84 Figure 4-18 TGA results of the as-received MgH2 and MgH2 under 1, 2,3 h mechanical milling, heated from room temperature to 450ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙85 Figure 4-19 XRD results of Mg-rich (mole ratio NaAlH4: MgH2=1:1, 1:2, 1:3) samples, after mechanical milling for 1 h˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙86 Figure 4-20 XRD results of Na-rich (mole ratio NaAlH4: MgH2=1:1, 2:1, 3:1) samples, after after mechanical milling for 1 h. heat treatment to 450ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙87 Figure 4-21 TGA results of as-received NaAlH4, MgH2 and Mg-rich (mole ratio NaAlH4: MgH2=1:1, 1:2, 1:3) samples, heated from room temperature to 450ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙88 Figure 4-22 XRD results of Mg-rich (mole ratio NaAlH4: MgH2=1:1,1:2, 1:3) samples, after heat treatment to 450ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙89 Figure 4-23 TGA results of as-received NaAlH4, MgH2 and Na-rich (mole ratio NaAlH4: MgH2=1:1, 2:1, 3:1) samples, heated from room temperature to 450ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙90 Figure 4-24 XRD results of Na-rich (mole ratio NaAlH4: MgH2=1:1, 2:1,3:1) samples, after heat treatment to 450ºC˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙91

    [1] J. A. Barnes, Overview of Selected Battery and Fuel Cell Programs of the U.S. Department of Energy, 2004 Taipei International Power Forum, Taipei, Taiwan, December 1, 2004.
    [2] J. A. Ritter, A. D. Ebner, J. Wang, R. Zidan, Implementing a hydrogen economy, Materials Today, 6 (2003) 18.
    [3] S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U.S. Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements, Catal. Today, 120 (2007) 246.
    [4] A. Zuttel, Hydrogen Storage Methods, Naturwissenshaften, 91 (2004) 157.
    [5] A. Zuttel, Materials for hydrogen storage, Materials Today, 6, (2003) 24.
    [6] J.A. Barnes, “Overview of Selected Battery and Fuel Cell Programs of the U.S. Department of Energy”, 2004 Taipei International Power Forum, Taipei, Taiwan, December 1, 2004.
    [7] K. L. Lim, H. Kazemian, Z. Yaakob, W. Daud, Solid-state materials and methods for hydrogen storage: a critical review, Chem. Eng. Technol., 2010;213:33.
    [8] Hydrogen Storage Technologies Roadmap (USCAR), 2005. (Available from: www.uscar.org/commands/files_ download .php?files¬_id=82)
    [9] L. Schlapbach, A. Zuttel, Hydrogen –storage materials for mobile applications, Nature, 2001;414:353.
    [10] W. I. F. David, Faraday Discuss., 2011; 399:151.
    [11] R. Chahine, T.K. Bose, Low-pressure adsorption storage of hydrogen , Int. J. Hydrogen Energy, 1994;175: 19.
    [12] C. Liu, H. M. Cheng, Carbon nanotubes for clean energy applications, J. Phys. D, 2005; 231:38.
    [13] E. David, An overview of advanced materials for hydrogen storage,

    J. Mater. Process. Technol., 2005;169:162-3.
    [14] Y. Zhao, Y. H. Kim, A.C. Dillon, M. J. Heben, S. B. Zhang, Hydrogen Storage in Novel Organometallic Buckyballs, Phys. Rev. Lett., 2005;155504:94.
    [15] W. Grochala , P.P. Edwards. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 2004;104:1283-1315 .
    [16] G. Sandrock. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 1999;293-295;877-888.
    [17] Basic research needs for the hydrogen economy , Second Printing, U.S. Department of Energy, Basic Research Challenges for Hydrogen Storage , Washington, DC, 2004, pp. 31–51.
    [18] L. Schlapbach, L.A. Züttel. Hydrogen-storage materials for mobile applications. Nature 2001;414:353-8.
    [19] D.K. Slattery, M.D. Hampton. Complex hydrides for hydrogen storage. In Proceedings of the 2002 U.S. D.O.E. Hydrogen Program Review NREL/CP-610–32405, Golden, CO.
    [20] G. Sandrock , R.C. Bowman Jr. Gas-based hydride applications: recent progress and future needs. J. Alloys Compd. 2003;356-7:794-9.
    [21] B. Bogdanovi´c, Richard A. Brand, Ankica Marjanovi´c, Manfred Schwickardi, Joachim Tolle. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J. Alloys Comp. 2000;302:36-58.
    [22] J. Wang, A. D. Ebner, A. R. James. Physiochemical Pathway for Cyclic Dehydrogenation and Rehydrogenation of LiAlH4. J. Am. Chem. Soc. 2006;128: 49-59.
    [23] M. Fichtner, O. Fuhr, O. Kircher. Small Ti clusters for catalysis of hydrogen exchange in NaAlH4. J. Alloys Comp. 2003;356-7:418-22.
    [24] Hiroyuki Morioka, Kenichi Kakizaki, Sai-Cheong Chung, Atsuo Yamada. Reversible hydrogen decomposition of KAlH4. J. Alloys Comp. 2003;353:310-4.
    [25] W. Schwab, K. Wintersberger, Z. Naturforsch. 8b (1953) 690.
    [26] Pierre Claudy, Bernard Bonnetot, Jean-Pierre Bastide, Letoffe Jean-Marie. Reactions of lithium and sodium aluminium hydride with sodium or lithium hydride. Preparation of a new alumino-hydride of lithium and sodium LiNa2AlH6. Mater. Res. Bull. 1982;17:499-501.
    [27] T. Noritake, S. Towata, M. Aoki, Y. Seno, Y. Hirose, E. ishibori, M.
    Takata, M. Sakata. Charge density measurement in MgH2 by synchrotron X-ray diffraction,” J. Alloys Compd. 2003;356-7:84-6.
    [28] T. Noritake, M. Aoki, S. Towata, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, M. Sakata. Chemical bonding of hydrogen in MgH2. Appl. Phys. Lett. 2002;81:2008-10.
    [29] J.A. Kennelley, J.W. Varwig, H.W. Myers. Magnesium-hydrogen relationships. J. Am. Chem. Soc. 1960;64:703-4.
    [30] C.M. Stander. Kinetics of decomposition of magnesium hydride. J. Inorg. Nucl. Chem. 1977;39:221-3.
    [31] R.A. Varin, T. Czujko, Z. S. Wronski. Nanomaterials for solid state hydrogen storage.
    [32] F.C. Gennari, F.J. Castro, G. Urretavizcaya. Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying. J. Alloys Compd. 2001;321:46-53.
    [33] G. Liang , J. Huot, S. Boily, A. Van Neste, R. Schulz. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 1999;292:247-52.
    [34] G. Liang, J. Huot , S. Boily , A. Van Neste , R. Schulz. Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite. J. Alloys Compd. 1999;291:295-9.
    [35] Z. Dehouche, R. Djaozandry, J. Huot, S. Boily, J. Goyette, T.K. Bose , R. Schulz. Influence of cycling on the thermodynamic and structure properties of nanocrystalline magnesium based hydride. J. Alloys Compd. 2000;305:264-71.
    [36] S. Bouaricha, J. Huot, D. Guay, R. Schulz. Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds. Int. J. Hydogen Energy. 2002;27:909-13.
    [37] J. Huot, J.F. Pelletier , L.B. Lurio, M. Sutton , R. Schulz. Investigation of dehydrogenation mechanism of MgH2-Nb nanocomposites. J. Alloys Compd. 2003;348:319-24.
    [38] C.X. Shang, M. Bououdina, Y. Song, Z.X. Guo. Mechanical alloying and electronic simulations of (MgH2 + M) systems (M= Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int. J. Hydogen Energy. 2004;29:73-80.
    [39] M. Au. Hydrogen storage properties of magnesium based nanostructured/amorphous composite materials. Mater. Res. Soc. Symp. Proc. 2004;801: BB1.5.1-1.5.14.
    [40] T. Czujko, R.A. Varin, Ch. Chiu , Z. Wronski . Investigation of the hydrogen desorption properties of Mg + 10wt.%X (X= V,Y,Zr). J. Alloys Compd. 2006;414:240-7.
    [41] J. L. Bobet, B. Chevalier, M.Y. Song, B. Darriet, J. Etourneau. Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding. J. Alloys Compd. 2002;336:292-6.
    [42] Y.Q. Hu, H.F. Zhang, A.M. Wang, B.Z. Ding, Z.Q. Hu. Preparation and hydriding/dehydriding properties of mechanically milled Mg-30wt.%TiMn1.5 composite. J. Alloys Compd. 2003;354:296-302.
    [43] Y.Q. Hu, C. Yan, H.F. Zhang, L. Ye, Z.Q. Hu. Preparation and hydrogenation characteristics of Mg-30wt.%Ti 37.5V 25Cr 37.5 composite,” J. Alloys Compd. 2004;375:265-9.
    [44] H. Imamura, Y. Takesue, T. Akimoto, S. Tabata. Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite: effects of additives on composite structures and hydriding properties. J. Alloys Compd. 1999;293-5:564-8.
    [45] C.Z. Wu, P. Wang, X. Yao, C. Liu, D.M. Chen, G.Q. Lu, H.M. Cheng. Hydrogen storage properties of MgH2 /SWNT composite prepared by ball milling. J. Alloys Compd. 2006;420:278-82.
    [46] D. Chen, L. Chen, S. Liu, C.X. Ma, D.M. Chen, L.B. Wang. Microstructure and hydrogen storage property of Mg/MWNTs composites. J. Alloys Compd. 2004;372:231-7.
    [47] T.N. Dymova, N.G. Eliseeva, S.I. Bakum, Y.M. Dergachev. Direct synthesis of alkalii metal aluminum hydrides in the melt. Dokl. Akad. Nauk SSSR 1974;215:1369-72 .
    [48] J.W. Lauher, D. Dougherty, P.J. Herley. Sodium tetrahydroaluminate. Acta Cryst. B 1979;35:1454-56.
    [49] Z. Ma, M. Y. Chou. First-principles investigation of sodium and lithium alloyed alanates. J Alloys Compd 2009;479:678–83.
    [50] E. C. Ashby, P. Kobetz. The direct synthesis of Na3AlH6. Inorg Chem 1966;5:1615-17.
    [51] B. Bogdanovic, R. A. Brand, A. Marjanovic, M. Schwickardi, Tolle J. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloys Compd 2000;302;36-58.
    [52] A. Zaluska , L. Zaluski , J.O. Ström-Olsen , “Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage” , Appl. Phys. A 2001;72:157-165.
    [53] B. Bogdanović, M. Schwickardi, “Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials”, J. Alloys Compd. 1997;253–254:1-9.
    [54] A. G. Haiduc, H. A. Stil, M. A. Schwarz, P. Paulus, J. J. C.Geerlings. On the fate of the Ti catalyst during hydrogen cycling of sodium alanate. J Alloy Compd 2005;393:252-63.
    [55] C. P. Balde, H. A. Stil, A. M. J. van der Eerden, K. P. de Jong, J. H. Bitter. Active Ti species in TiCl3-doped NaAlH4. Mechanism for catalyst deactivation. J Phys Chem C 2007;111:2797-802.
    [56] M. Resan, M.D. Hampton, J.K. Lomness, D.K. Slattery. Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4. Int J Hydrogen Energ 2005;30:1417-21.
    [57] J. Wang , A.D. Ebner , R. Zidan , J.A. Ritter , “Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride” , J. Alloys Compd. 2005;391:245-55.
    [58] J. Wang , A.D. Ebner , T. Prozorov , R. Zidan , J.A. Ritter , “Effect of graphite as a co-dopant on the dehydrogenation and hydrogenation kinetics of Ti-doped sodium aluminum hydride” , J. Alloys Compd. 2005;395:252-62.
    [59] A. Zaluska, L. Zaluski, J. O. Strom-Olsen. Sodium alanates for reversible hydrogen storage. J Alloys Compd 2000;298:125-34.
    [60] D. Pukazhelvan. O.N. Srivastava. Investigations on hydrogen storage behavior of CNT doped NaAlH4. J Alloys Compd 2005;403:312-7.
    [61] P. Adelhelm, J. B. Gao, M. H. W. Verkuijlen, C. Rongeat, M. Herrich, P. J. M. van Bentum. Comprehensive study of melt infiltration for the synthesis of NaAlH4/C nanocomposites. Chem Mat 2010;22 :2233-8.
    [62] C. P Balde, B.P.C Hereijgers, J. H. Bitter, K. P. de Jong. Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. Angew Chem Int Edit 2006;45:3501-3.
    [63] P. A. Berseth, A. G. Harter. Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4. Nano Letters 2009;9:1501-5.
    [64] J. J. Reilly, R. H. Wiswall. Reaction of hydrogen with alloys of magnesium and copper. Inorg Chem 1967;6:2220-3.
    [65] J. J. Reilly, R. H. Wiswall. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem 1968;7:2254-6.
    [66] J. J. Vajo, F. Mertens, C. C. Ahn, R. C. Bowman, B. Fultz. Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J Phys Chem B 2004;108:13977-83.
    [67] Y. Zhang, Q. F. Tian, S. S. Liua, L.X. Suna. The destabilization mechanism and de/re-hydrogenation kinetics of MgH2–LiAlH4 hydrogen storage system. Journal of Power Sources 2008;185:1514-8.
    [68] K. J. Gross, S. Guthrie, S. Takara, G. J. Thomas. In-situ X-ray diffraction study of the decomposition of NaAlH4. J Alloys Compd 2000;297:270-81.
    [69] K.J. Gross, G.J. Thomas, C.M. Jensen. Catalyzed alanates for hydrogen storage. J Alloys Compd 2002;330-2:683-90.
    [70] G. Sandrock, J. Reilly, J. Graetz, W. M. Zhou, J. Johnson, J. Wegrzyn. Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles. Appl. Phys. A 2005;80: 687-90.
    [71] S.Y. Sean, J.Y. Lin, H.K. Harold. Transition metal-decorated activated carbon catalysts for dehydrogenation of NaAlH4. Inter J Hydrog Energy 2012;37:2737-41.

    下載圖示 校內:2015-08-08公開
    校外:2015-08-08公開
    QR CODE