簡易檢索 / 詳目顯示

研究生: 吳佳星
Wu, Jia-Sing
論文名稱: 抗菌胜肽Parasin I結構及活性的分析
Studies of structure-function relationship of parasin I
指導教授: 鄭梅芬
Jeng, Mei-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 70
中文關鍵詞: 二維核磁共振蛋白質結構抗菌胜肽
外文關鍵詞: 2D NMR, parasin I
相關次數: 點閱:104下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
      由於越來越多的致病原對抗生素具有抗藥性,所以發展新的抗菌分子則越發顯得重要;而抗菌胜肽則是重要的焦點之一;抗菌胜肽廣布在自然界之生物體中,為最早發展出來的先天性免疫系統。絕大部分的抗菌胜肽可以快速專一地殺掉目標細胞,而且其作用物種很廣泛。抗菌胜肽除了具有抗微生物的功能外,還具有其他功能,像是促進傷口癒合,刺激單核球的趨化反應,及抑制細胞激素cytokine的反應。了解這些胜肽的結構可以幫助更加了解其功能。
      Parasin I原始的前趨物是鯰魚的histone H2A,胺基酸序列為Lys-Gly-Arg-Gly-Lys-Gln-Gly-Gly-Lys-Val-Arg-Ala-Lys-Ala-Lys-Thr-Arg-Ser-Ser。
      本論文利用氫原子核磁共振光譜,在SDS仿細菌膜環境下研究其三度空間的結構。在計算得到parasin I的結構後,發現雖然parasin I沒有一般常見的二級結構的組成存在。但是,可以看出琪具有兩性結構,殘基10、12、14的胺基酸組成疏水性團,而殘基11、13、15組成親水性團。由parasin I在微泡中之結構,可以推斷parasin I作用機轉可能是以靜電作用力為主。

     With the rise of pathogens resistant to conventional antibiotics, the search for novel antimicrobial agents has heightened. Antimicrobial peptides have been one area of great focus. The structural features of these peptides give insight into how they functions. Parasin I is an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. The complete amino acid sequence of parasin I, which was determined by automated Edman degradation, was Lys-Gly-Arg-Gly- Lys-Gln-Gly-Gly-Lys-Val-Arg-Ala-Lys-Ala-Lys-Thr-Arg-Ser-Ser.
     Its structure in SDS micelle was determined using proton NMR data. Solution structure of parasin I lacks classical secondary structures in SDS micelle when pH is 5.0. Residues Val10, Ala12, and Ala14 were located at the hydrophobic side of the structure and Arg11, Lys13, and Lys15 were located at the polar side. Electrostatic interactions may play an important role in the binding of this peptide to the membrane surface.

    目錄 中文摘要…………………………………………………Ι 英文摘要…………………………………………………II 誌謝………………………………………………………III 目錄………………………………………………………IV 圖目錄……………………………………………………VI 表目錄……………………………………………………VII 附圖目錄 ……………………………………………VIII 附表目錄…………………………………………………IX 第一章 研究主題背景 1-1 抗菌胜肽的概述……………………………………1 1-2 Parasin I 的背景介紹……………………………4 1-3 決定蛋白質結構方法之介紹………………………5 1-4 論文研究動機、策略及目的………………………24 第二章 研究材料及方法 2-1 樣品製備 …………………………………………26 2-2 實驗方法……………………………………………28 2-3 利用NMR 方法決定蛋白質的三度空間結構………29 2-3-1 蛋白質的1H NMR 光譜判定 ……………………30 a.質子自旋系統判定(Spin-system assignment) …30 b.循序判定(Sequential assignment) ……………31 c.分子結構的限制條件…………………………………33 2-3-2 結構計算三度空間結構的顯示與排列(alignment)……………………………………………35 2-3-2-1利用MolMol作出重疊圖 ………………………36 2-3-2-2利用MolMol作出表面靜電荷分布圖 …………38 2-4抗菌活性的測試 ……………………………………40 第三章 實驗結果 3-1 Parasin I 之NMR 圖譜的分析……………………41 a. Parasin I 之二級結構分析 ………………………41 b. Parasin I 的三度空間立體結構 …………………42 第四章 討論與結果 ……………………………………44 參考文獻 ………………………………………………49 圖 ………………………………………………………53 表 ………………………………………………………66 附圖………………………………………………………72 附表 ……………………………………………………81 自述………………………………………………………87 圖目錄 圖一. ParasinI 利用swissprot預測的三級結構……53 圖二(a). Chemical shift index(化學位移指標)(NH部分) ………………………………………………………54 圖二(b) Chemical shift index(化學位移指標)( CαH部分) ………………………………………………………55 圖三. DQFCOSY光譜圖 2 mM Parasin I in SDS micelle, pH 5.8只顯示NH-Cα支鏈……………………56 圖四. TOCSY光譜圖 2 mM Parasin I in SDS micelle, pH 5.8 只顯示NH-支鏈的部分…………………………57 圖五. NOESY光譜圖 2 mM Parasin I in SDS micelle, pH 5.8 只顯示NH-支鏈的部分…………………………58 圖六. Ramanchandran圖 ………………………………59 圖七. Parasin I 20個結構結構疊合圖,此只顯示主鏈部分………………………………………………………60 圖八. 各個殘基的NOE數目 ……………………………61 圖九. short- and mid-range NOEs …………………62 圖十. Parasin I之表面電荷分布圖 …………………63 圖十一. Parasin I電子密度分布圖 …………………64 圖十二. Parasin I sequencial assignment ………65 表目錄 表一. Parasin I結構之統計數據 ……………………66 表二. Parasin I 二級結構的組成……………………67 表三. Parasin I之化學位移表(at pH 5.8)…………68 表四. Parasin I 結構計算統計表……………………70 表五. Parasin I 最小抑制濃度………………………71 附圖目錄 附圖一. NMR機器 ………………………………………72 附圖二. Sequencial assignment ……………………73 附圖三. 蛋白質雙面角相對位置圖……………………74 附圖四. 帶正電胜肽破壞細胞膜的一種機制…………75 附圖五. NMR光譜圖的介紹 ……………………………76 附圖六. Parasin I在TFE水溶液中的二級結構CD光譜圖…………………………………………………………77 附圖七. 以NMR 資料決定分子三度空間結構之流程圖…………………………………………………………78 附圖八. 為簡易核磁共振蛋白質結構運算流程………79 附圖九. 各種二級結構常見之短及中長距離之NOE連結…………………………………………………………80 附表目錄 附表一. Parasin I對不同菌株的MIC濃度……………81 附表二. 帶正電抗菌胜肽的活性………………………82 附表三. 抗菌胜肽可能引起的一些其他免疫反應……83 附表四. 20個殘基在random coil的化學位移表 ……84 附表五. 目前已經商品化的抗菌胜肽…………………85 附表六. 兩質子間距離與NOE 訊號比例之關係………86

    A. Ducruix. Crystallization of nucleic acids and proteins-A practical approach. Information Press Ltd., Oxford. (1992).
    A.M. Cole, P. Weis, G. Diamond. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. The Journal of Biological Chemistry 272: 12008-12013 (1997).
    A. Tossi, L. Sandri, A. Giangaspero. Amphipathic, α-helical antimicrobial
    peptide. Biopolymers 55: 4-30 (2000).
    B.P. Cammue, M.F. De Bolle, F.R. Terras, P. Proost, J. Van Damme, S.B. Rees, J. Vanderleyden, W.F. Broekaert. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L.
    seeds. The Journal of Biological Chemistry 267: 2228-2233 (1992).
    B. Schittek, R. Hipfel, B. Sauer, J. Bauer, H. Kalbacher, S. Stevanovic, M. Schirle, K. Schroeder, N. Blin, F. Meier, G. Rassner, C. Garbe. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nature Immunology 2: 1133-1137 (2001).
    C. Rhodes. Crystallography Made Crystal Clear: A Guide For Users Of Macromolecular Models. 2nd edition, Academic Press, New York. (1999).
    D. Gidalevitz, Y. Ishitsuka, A.S. Muresan, O. Konovalov, A.J. Waring, R.I. Lehrer, K.C. Lee. Interaction of antimicrobial peptide protegrin with Biomembranes. Proceedings of the National Academy of Sciences of the United States of America 100: 6302-6307 (2003).
    H.S. Kim, H. Yoon, I. Minn, C.B. Park, W.T. Lee, M. Zasloff, S.C. Kim. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. Journal Of Immunology 165: 3268-3274 (2000).
    H. Ulvatne, L.H. Vorland. Bactericidal kinetics of 3 lactoferricins against Staphylococcus aureus. and Escherichia coli. Scandinavian Journal of Infectious Diseases 33: 507-511 (2001).
    H. Wong, J.H. Bowie, J.A. Carver. The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida. European Journal of Biochemistry 247: 545-557 (1997).
    H.W. Huang. Action of antimicrobial peptides: Two-state model. Biochemistry 39: 8347–8352 (2000).
    I.Y. Park, C.B. Park, M.S. Kim, S.C. Kim. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus.
    FEBS Letters 437: 258-262 (1998).
    J. Drenth. Principles of Protein X-Ray Crystallography. Springer-Verlag,
    New York. (1994).
    J.H. Cho, I.Y. Park, H.S. Kim, W.T. Lee, M.S. Kim, S.C. Kim. Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. The FASEB Journal 16: 429-431 (2002).
    K.A. Brogden. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 238-250 (2005).
    K.A. H. Wildman, D.K. Lee, A. Ramamoorthy. Mechanism of lipid
    bilayer disruption by the human antimicrobial peptide, LL-37 Biochemistry 42: 6545-6558 (2003).
    K.J. Hallock, D.K. Lee, A. Ramamoorthy. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via
    positive curvature strain. Biophysical Journal 84: 3052-3060 (2003).
    K.J. Hallock, D.K. Lee, J. Omnaas, H.I. Mosberg, A. Ramamoorthy. Membrane composition determines Pardaxin's mechanism of lipid bilayer disruption. Biophysical Journal 83: 1004-1013 (2002).
    K.J. Hallock, K.H. Wildman, D.K. Lee, A. Ramamoorthy. An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophysical Journal 82: 2499-2503 (2002).
    K. Pütsep, C. Brändén, H.G. Boman, S. Normark. Antibacterial peptide from H. pylori. Nature 398: 671-672 (1999).
    L. Zhang, P. Dhillon, H. Yan, S. Farmer, R.E. W. Hancock. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic
    membranes of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 44: 3317-3321 (2000).
    M. Wu, E. Maier, R. Benz, R.E. W. Hancock. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38: 7235-7242 (1999).
    M. Zasloff. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of The National Academy of
    Sciences of The United States of America 84: 5449-5453 (1987).
    M. Zasloff. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395 (2002).
    N. Mandard, P. Bulet, A. Caille, S. Daffre, F. Vovelle. The solution structure of gomesin, an antimicrobial cystein-rich an peptide from the
    spider. European Journal of Biochemistry 269: 1190-1198 (2002).
    N. Sitaram, R. Nagaraj. Host-defense antimicrobial peptides: Importance of
    structure for activity. Current Pharmaceutical Design 8: 727-742 (2002).
    N.Y. Yount, M.R. Yeaman. Multidimensional signatures in antimicrobial peptides. Proceedings of the National Academy of Sciences of the United States of America 101: 7363-7368 (2004).
    P. K. Singh, M.R. Parsek, E.P. Greenberg, M. J. Welsh. A component of innate immunity prevents bacterial biofilm development. Nature 417: 552-555 (2002).
    R.E. W. Hancock, G. Diamond. The role of cationic antimicrobial peptides in innate host defences. Trends in Microbiology 8: 402-410 (2000).
    R.I. Lehrer, A.K. Lichtenstein, T. Ganz. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annual Review Of Immunology
    11: 105-128 (1993).
    R.M. Epand, H.J. Vogel. Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes 1462: 11-28 (1999).
    S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, Y. Sugiura. Arginine-rich peptides, an abundant source of membranepermeable
    peptides having potential as carrier for intracellular protein delivery. Journal of Biological Chemistry 276: 5836-5840 (2001).
    S. Kobayashi, A. Chikushi, S. Tougu, Y. Imura, M. Nishida, Y. Yano, K. Matsuzaki. Membrane translocation mechanism of the antimicrobial
    peptide buforin. Biochemistry 43: 15610-15616 (2004).
    S.R. Dennison, F. Harris, D.A. Phoenix. Are oblique orientated α-helices used by antimicrobial peptides for membrane invasion? Protein and Peptide Letters 12: 27-29 (2005).
    T. Ganz, R.I. Lehrer. Defensins. Current Opinion in Immunology 6: 584-589 (1994).
    T. Ganz. Defensins: Antimicrobial peptides of innate immunity. Nature Review Immunology 3: 710-720 (2003).
    T.L. Blundell, L.N. Johnson. Protein Crystallography. Academic Press, San Diego (1976).
    行政院農委會家畜衛生試驗所網站 (http://www.nvri.gov.tw)

    下載圖示 校內:2007-02-10公開
    校外:2007-02-10公開
    QR CODE