| 研究生: |
吳佳星 Wu, Jia-Sing |
|---|---|
| 論文名稱: |
抗菌胜肽Parasin I結構及活性的分析 Studies of structure-function relationship of parasin I |
| 指導教授: |
鄭梅芬
Jeng, Mei-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 二維核磁共振 、蛋白質結構 、抗菌胜肽 |
| 外文關鍵詞: | 2D NMR, parasin I |
| 相關次數: | 點閱:104 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
由於越來越多的致病原對抗生素具有抗藥性,所以發展新的抗菌分子則越發顯得重要;而抗菌胜肽則是重要的焦點之一;抗菌胜肽廣布在自然界之生物體中,為最早發展出來的先天性免疫系統。絕大部分的抗菌胜肽可以快速專一地殺掉目標細胞,而且其作用物種很廣泛。抗菌胜肽除了具有抗微生物的功能外,還具有其他功能,像是促進傷口癒合,刺激單核球的趨化反應,及抑制細胞激素cytokine的反應。了解這些胜肽的結構可以幫助更加了解其功能。
Parasin I原始的前趨物是鯰魚的histone H2A,胺基酸序列為Lys-Gly-Arg-Gly-Lys-Gln-Gly-Gly-Lys-Val-Arg-Ala-Lys-Ala-Lys-Thr-Arg-Ser-Ser。
本論文利用氫原子核磁共振光譜,在SDS仿細菌膜環境下研究其三度空間的結構。在計算得到parasin I的結構後,發現雖然parasin I沒有一般常見的二級結構的組成存在。但是,可以看出琪具有兩性結構,殘基10、12、14的胺基酸組成疏水性團,而殘基11、13、15組成親水性團。由parasin I在微泡中之結構,可以推斷parasin I作用機轉可能是以靜電作用力為主。
With the rise of pathogens resistant to conventional antibiotics, the search for novel antimicrobial agents has heightened. Antimicrobial peptides have been one area of great focus. The structural features of these peptides give insight into how they functions. Parasin I is an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. The complete amino acid sequence of parasin I, which was determined by automated Edman degradation, was Lys-Gly-Arg-Gly- Lys-Gln-Gly-Gly-Lys-Val-Arg-Ala-Lys-Ala-Lys-Thr-Arg-Ser-Ser.
Its structure in SDS micelle was determined using proton NMR data. Solution structure of parasin I lacks classical secondary structures in SDS micelle when pH is 5.0. Residues Val10, Ala12, and Ala14 were located at the hydrophobic side of the structure and Arg11, Lys13, and Lys15 were located at the polar side. Electrostatic interactions may play an important role in the binding of this peptide to the membrane surface.
A. Ducruix. Crystallization of nucleic acids and proteins-A practical approach. Information Press Ltd., Oxford. (1992).
A.M. Cole, P. Weis, G. Diamond. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. The Journal of Biological Chemistry 272: 12008-12013 (1997).
A. Tossi, L. Sandri, A. Giangaspero. Amphipathic, α-helical antimicrobial
peptide. Biopolymers 55: 4-30 (2000).
B.P. Cammue, M.F. De Bolle, F.R. Terras, P. Proost, J. Van Damme, S.B. Rees, J. Vanderleyden, W.F. Broekaert. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L.
seeds. The Journal of Biological Chemistry 267: 2228-2233 (1992).
B. Schittek, R. Hipfel, B. Sauer, J. Bauer, H. Kalbacher, S. Stevanovic, M. Schirle, K. Schroeder, N. Blin, F. Meier, G. Rassner, C. Garbe. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nature Immunology 2: 1133-1137 (2001).
C. Rhodes. Crystallography Made Crystal Clear: A Guide For Users Of Macromolecular Models. 2nd edition, Academic Press, New York. (1999).
D. Gidalevitz, Y. Ishitsuka, A.S. Muresan, O. Konovalov, A.J. Waring, R.I. Lehrer, K.C. Lee. Interaction of antimicrobial peptide protegrin with Biomembranes. Proceedings of the National Academy of Sciences of the United States of America 100: 6302-6307 (2003).
H.S. Kim, H. Yoon, I. Minn, C.B. Park, W.T. Lee, M. Zasloff, S.C. Kim. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. Journal Of Immunology 165: 3268-3274 (2000).
H. Ulvatne, L.H. Vorland. Bactericidal kinetics of 3 lactoferricins against Staphylococcus aureus. and Escherichia coli. Scandinavian Journal of Infectious Diseases 33: 507-511 (2001).
H. Wong, J.H. Bowie, J.A. Carver. The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida. European Journal of Biochemistry 247: 545-557 (1997).
H.W. Huang. Action of antimicrobial peptides: Two-state model. Biochemistry 39: 8347–8352 (2000).
I.Y. Park, C.B. Park, M.S. Kim, S.C. Kim. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus.
FEBS Letters 437: 258-262 (1998).
J. Drenth. Principles of Protein X-Ray Crystallography. Springer-Verlag,
New York. (1994).
J.H. Cho, I.Y. Park, H.S. Kim, W.T. Lee, M.S. Kim, S.C. Kim. Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. The FASEB Journal 16: 429-431 (2002).
K.A. Brogden. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 238-250 (2005).
K.A. H. Wildman, D.K. Lee, A. Ramamoorthy. Mechanism of lipid
bilayer disruption by the human antimicrobial peptide, LL-37 Biochemistry 42: 6545-6558 (2003).
K.J. Hallock, D.K. Lee, A. Ramamoorthy. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via
positive curvature strain. Biophysical Journal 84: 3052-3060 (2003).
K.J. Hallock, D.K. Lee, J. Omnaas, H.I. Mosberg, A. Ramamoorthy. Membrane composition determines Pardaxin's mechanism of lipid bilayer disruption. Biophysical Journal 83: 1004-1013 (2002).
K.J. Hallock, K.H. Wildman, D.K. Lee, A. Ramamoorthy. An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophysical Journal 82: 2499-2503 (2002).
K. Pütsep, C. Brändén, H.G. Boman, S. Normark. Antibacterial peptide from H. pylori. Nature 398: 671-672 (1999).
L. Zhang, P. Dhillon, H. Yan, S. Farmer, R.E. W. Hancock. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic
membranes of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 44: 3317-3321 (2000).
M. Wu, E. Maier, R. Benz, R.E. W. Hancock. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38: 7235-7242 (1999).
M. Zasloff. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of The National Academy of
Sciences of The United States of America 84: 5449-5453 (1987).
M. Zasloff. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395 (2002).
N. Mandard, P. Bulet, A. Caille, S. Daffre, F. Vovelle. The solution structure of gomesin, an antimicrobial cystein-rich an peptide from the
spider. European Journal of Biochemistry 269: 1190-1198 (2002).
N. Sitaram, R. Nagaraj. Host-defense antimicrobial peptides: Importance of
structure for activity. Current Pharmaceutical Design 8: 727-742 (2002).
N.Y. Yount, M.R. Yeaman. Multidimensional signatures in antimicrobial peptides. Proceedings of the National Academy of Sciences of the United States of America 101: 7363-7368 (2004).
P. K. Singh, M.R. Parsek, E.P. Greenberg, M. J. Welsh. A component of innate immunity prevents bacterial biofilm development. Nature 417: 552-555 (2002).
R.E. W. Hancock, G. Diamond. The role of cationic antimicrobial peptides in innate host defences. Trends in Microbiology 8: 402-410 (2000).
R.I. Lehrer, A.K. Lichtenstein, T. Ganz. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annual Review Of Immunology
11: 105-128 (1993).
R.M. Epand, H.J. Vogel. Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes 1462: 11-28 (1999).
S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, Y. Sugiura. Arginine-rich peptides, an abundant source of membranepermeable
peptides having potential as carrier for intracellular protein delivery. Journal of Biological Chemistry 276: 5836-5840 (2001).
S. Kobayashi, A. Chikushi, S. Tougu, Y. Imura, M. Nishida, Y. Yano, K. Matsuzaki. Membrane translocation mechanism of the antimicrobial
peptide buforin. Biochemistry 43: 15610-15616 (2004).
S.R. Dennison, F. Harris, D.A. Phoenix. Are oblique orientated α-helices used by antimicrobial peptides for membrane invasion? Protein and Peptide Letters 12: 27-29 (2005).
T. Ganz, R.I. Lehrer. Defensins. Current Opinion in Immunology 6: 584-589 (1994).
T. Ganz. Defensins: Antimicrobial peptides of innate immunity. Nature Review Immunology 3: 710-720 (2003).
T.L. Blundell, L.N. Johnson. Protein Crystallography. Academic Press, San Diego (1976).
行政院農委會家畜衛生試驗所網站 (http://www.nvri.gov.tw)