簡易檢索 / 詳目顯示

研究生: 賴憲欽
Lai, Shian-Chin
論文名稱: 應用微流體晶片與震盪晶片生成光交聯微小球與微膠囊之研究
Using Microfluidic Chip and Transducer for Photocrosslinking Microparticle and Microcapsule Generation
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 微膠囊震盪晶片光交聯微小球雙Y字型設計
外文關鍵詞: UV-crosslinking microparticles, transducer, double Y cross-junction, microcapsule
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用雷射雕刻技術,製備聚甲基丙烯酸甲酯(Poly-methyl-methacrylate, PMMA) 微流體晶片,並結合震盪晶片,運用於光交聯微小球與微膠囊之製備。研究策略是將光交聯溶液(UV-Polymer solution)與礦物油(Mineral oil)注入微流道中,透過震盪晶片所產生之超音波製備出光交聯微乳化球。經實驗結果顯示輸入電壓之大小與超音波震盪距離皆會影響所生成之光交聯微乳化球的粒徑大小,且經由365 nm之紫外光照射,光交聯微乳化球可固化形成光交聯微小球,其粒徑大小分佈在1.2 ~ 9.5 μm之間。應用以上的結果,本研究進一步透過微膠囊(Microcapsules)製備原理,在後端流道加入雙Y字型設計,將散佈於礦物油內之光交聯微小球包覆於褐藻酸鈉(Alginate)內,並藉由控制褐藻酸鈉(包覆相)與葵花油(剪切相)流速,成功製備出粒徑大小分佈在89.0 ~ 248.9 μm之間的褐藻酸鈉微膠囊。

    This study managed to generate UV-photopolymerized microparticles using an ultrasonic vibration microfluidic chip coupled with external UV-crosslinking reaction. We have demonstrated that the sizes of UV-crosslinking microparticles were able to be controlled from 1.2 μm to 9.5 μm in diameter (with a variation of less than 10%) by altering the ultrasonic vibration distance and the voltage of power supply provided to transducer. Then by using hydrodynamic focusing effect, we design a double Y cross-junction microfluidic chip to generate microcapsules. By altering the wrap phase and sheath phase flow rate, the microcapsule size is controlled, the distribution of which is from 89.0 μm to 248.9 μm in diameter (with a variation of less than 10%). The proposed ultrasonic vibration microfluidic chip was easy to fabricate and capable of high throughput and low cost.

    中文摘要 ................................................ I Abstract ............................................... II 誌謝 ...................................................III 目錄 ....................................................IV 圖目錄 ................................................VIII 表目錄 ................................................XIII 第一章 緒論...............................................1 1-1 前言..................................................1 1-2 藥物控制釋放系統之重要性...........................3 1-3 超音波霧化器與震盪晶片之介紹...........................6 1-4 藥物載體材料光交聯水膠之介紹..........................7 1-4-1 光交聯反應原理......................................8 1-4-2 製備光交聯水膠的方法...............................11 1-4-3 光交聯水膠的應用...................................12 1-5 包覆材料-褐藻酸鈉之介紹.............................13 1-6 文獻回顧.............................................15 1-7 研究動機與目的.......................................20 1-8 實驗架構.............................................21 第二章 微流體晶片設計與製作..............................22 2-1 微流體晶片之設計.....................................22 2-1-1 光交聯微小球製備型微流體晶片之結構設計.............22 2-1-2 微膠囊製備型微流體晶片之結構設計...................28 2-2 微流體晶片之製作.....................................34 2-3 晶片之接合與組裝技術.................................42 2-4 震盪晶片包埋技術.....................................44 2-5 微流體晶片製作結果...................................46 2-5-1 光交聯微小球製備型微流體晶片製作結果...............46 2-5-2 微膠囊製備型微流體晶片製作結果.....................47 第三章 實驗與研究方法....................................48 3-1 實驗儀器與設備.......................................48 3-1-1 真空抽氣系統.......................................48 3-1-2 微量注射幫浦.......................................49 3-1-3 電磁加熱攪拌器.....................................50 3-1-4 超音波生成系統.....................................51 3-1-5 紫外燈照射儀器.....................................52 3-1-6 即時影像觀測系統...................................53 3-1-7 微膠囊生成平台.....................................54 3-2 實驗材料與調配方法...................................55 3-2-1 光交聯微小球實驗...................................55 3-2-2 微膠囊實驗.........................................55 3-3 實驗方法.............................................56 3-3-1 光交聯微小球生成實驗...............................57 3-3-2 微膠囊生成實驗.....................................58 第四章 結果與討論........................................60 4-1 光交聯微小球生成探討.................................61 4-1-1 超音波震盪距離與光交聯微小球生成之關係.............61 4-1-2 電壓與光交聯微小球生成之關係.......................65 4-2 微膠囊生成探討.......................................71 4-2-1 微膠囊粒徑分佈與實驗變因之關係.....................71 4-2-2 微膠囊包覆能力之證明...............................78 第五章 結論與建議........................................80 5-1 結論.................................................80 5-2 建議.................................................82 參考文獻 ................................................83 自述 ....................................................94

    [1] L. G. Griffith, “Polymeric biomaterials,” Acta
    Materialia, 48, pp. 263-277, 2000.
    [2] R. Langer, “Drug delivery and targeting,” Nature,
    392, pp. 5-10, 1998.
    [3] X. Z. Shu, K. J. Zhu amd W. Song, “Novel pH-
    sensitive citrate cross-linked chitosan film for
    drug controlled release,” International Journal of
    Pharmaceutics, 212, pp. 19-28, 2001.
    [4] A. Lamprecht, H. R. Torres, U. Schafer and C. M.
    Lehr, “Biodegradable microparticles as a two-drug
    controlled release formulation: a potential
    treatment of inflammatory bowel disease,” Journal
    of Controlled Release, 69, pp. 445-454, 2000.
    [5] R. J. Tamargo, J. S. Myseros, J. I. Epstein, M. B.
    Yang, M. Chasin and M. Brem, “Interstitial
    chemotherapy of the 9L gliosarcoma: controlled
    release polymers for drug delivery in the brain,”
    Cancer Research, 53, pp. 329-333, 1993.
    [6] L. Mua and S. S. Feng, “A novel controlled release
    formulation for the anticancer drug paclitaxel
    (Taxol®): PLGA nanoparticles containing vitamin
    ETPGS ,” Journal of Controlled Release, 86, pp. 33-
    48, 2003.
    [7] I. C. Kwon, Y. H. Bae and S. W. Kim, “Electrically
    credible polymer gel for controlled release of
    drugs,” Nature, 354, pp. 291-293, 1991.
    [8] http://www.whbl.com.tw/index.php?mainpage=1
    [9] http://img.diytrade.com/cdimg/336618/1566663/0/112848
    4409.jpg
    [10] http://originimages.ttnet.net/pi/cto/40/08/44/73/400
    84473-1.jpg
    [11] J. L. Hill-West, S. M. Chowdhury, R. C. Dunn and J.
    A. Hubbell, “Efficacy of a resorbable hydrogel
    barrier, oxidized regenerated cellulose, and
    hyaluronic acid in the prevention of ovarian
    adhesions in a rabbit model,” Fertility and
    Sterility , 62, pp. 630-634, 1994.
    [12] J. Elisseeff, W. McIntosh, K. Anseth, S. Riley, P.
    Ragan and R. Langer, “Photoencapsulation of
    chondrocytes in poly(ethylene oxide)-based semi-
    interpenetrating networks,” Journal of Biomedical
    Materials Research, 51, pp. 164-171, 2000.
    [13] B. A. M. Venhoven, A. J. Gee and C. L. Davidson,
    “Light initiation of dental resins: dynamics of the
    polymerization,” Biomaterials, 17, pp. 2313-2318,
    1996.
    [14] K. T. Nguyen and J. L. West, “Photopolymerization
    hydrogels for tissue engineering applications,”
    Biomaterials, 23, pp. 4307-4314, 2002.
    [15] A. B. Scranton, C. N. Bowman and R. W. Peiffer,
    “Photopolymerization fundamentals and
    applications,” New Orleans: ACS Publishers, 1996.
    [16] C. Decker, “UV-curing chemistry: past, present, and
    future,” Journal of Coatings Technology, 59, pp. 97-
    106, 1987.
    [17] J. P. Fisher, D. Dean, P. S. Engel and A. G. Mikos,
    “Photoinitiated polymerization of biomaterials,”
    Annual Review of Materials Research, 31, pp. 171-
    181, 2000.
    [18] S. J. Byrant, C. R. Nuttelman and K. S. Anseth,
    “Cytocompatibility of UV and visible light
    photoinitiating systems on cultured NIH/3T3
    fibroblasts in vitro,” Journal of Biomaterials
    Science, Polymer Edition, 11, pp. 439-457, 2000.
    [19] J. L. West and J. A. Hubbell, “Separation of the
    arterial wall from blood contact using hydrogel
    barriers reduces intimal thickening after balloon
    injuries in the rat: the roles of medial and luminal
    factors in arterial healing,” Proceedings of the
    National Academy of Sciences of the United States of
    America, 93, pp. 13188-13193, 1996.
    [20] A. S. Sawhney and C. P. Pathak, “Optimization of
    photopolymerized bioerodible hydrogel properties for
    adhesion prevention,” Journal of Biomedical
    Materials Research, 28, pp. 831-838, 1994.
    [21] J. Lee, C. W. Macosko and D. W. Urry, “Swelling
    behavior of crosslinked elastomeric polypentapeptide-
    based hydrogels,” Macromolecule, 34, pp. 4114-4123,
    2001.
    [22] B. K. Mann, A. S. Gobin, A. T. Tsai, R. H. Schmedlen
    and J. L. West, “Smooth muscle cell growth in
    photopolymerized hydrogels with cell adhesive and
    proteolytically degradable domains: synthetic ECM
    analogs for tissue engineering,” Biomaterials, 22,
    pp. 3045-3051, 2001.
    [23] J. Siepmann and A. Göpferich, “Mathematical
    modeling of bioerodible, polymeric drug delivery
    systems,” Advanced Drug Delivery Reviews, 48, pp.
    229-247, 2001.
    [24] R. N. Reusch and H. L. Sadoff, “Putative structure
    and functions of a Poly-ß-hydroxybutyrate/calcium
    polyphosphate channel in bacterial plasma
    membranes,” Proceedings of the National Academy of
    Sciences, 85, pp. 4176-4180, 1988.
    [25] T. Yotsuyanagi, T. Ohkubo, T. Ohhashi and K. Ikeda,
    “Calcium-induced gelation of alginic acid and pH-
    sensitive reswelling of dried gels,” Chemical
    Pharmaceutical Bulletin, 35, pp. 1555-1563, 1987.
    [26] J. H. Cui, J. S. Goh, P. H. Kim, S. H. Choi and B.
    J. Lee, “Survival and stability of bifidobacteria
    loaded in alginate poly-l-lysine microparticles,”
    International Journal of Pharmaceutics, 210, pp. 51-
    59, 2000.
    [27] A. Martinsen, G. Skjåk-Bræk and O. Smidsrød,
    “Alginate as immobilization material: I. Correlation
    between chemical and physical properties of alginate
    gel beads,” Biotechnology and bioengineering, 33,
    pp. 79-89, 1989.
    [28] W. Sabra, A. P. Zeng and W. D. Deckwer, “Bacterial
    alginate: physiology, product quality and process
    aspects,” Applied Microbiology and Biotechnology,
    56, pp. 315-325, 2001.
    [29] S. Takka and F. Acartürk, “Calcium alginate
    microparticles for oral administration: I. Effect of
    sodium alginate type on drug release and drug
    entrapment efficiency,” Journal of
    Microencapsulation, 16, pp. 275-290, 1999.
    [30] P. D. Vos, B. D. Haan and R. V. Schilfgaar, “Effect
    of the alginate composition on the biocompatibility
    of alginate-polylysine microcapsules,”
    Biomaterials, 18, pp. 273-278, 1997.
    [31] H. Akiyama, T. Endo, R. Nakakita, K. Murata, Y.
    Yonemoto and K. Okayama, “Effect of depolymerized
    alginates on the growth of bifidobacteria,” Biosci
    Biotechnol Biochem, 56, pp. 355-356, 1992.
    [32] C. D. Scott, “Immobilized cells: A review of recent
    literature,” Enzyme and Microbial Technology, 9,
    pp. 66-73, 1987.
    [33] N. Gerbsch and R. Buchholz, “New processes and
    actual trends in Biotechnology,” FEMS Microbiology
    Reviews, 16, pp. 259-269, 1995.
    [34] G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres
    and M. Rinaudo, “Physico-chemical characterization
    of Ca-alginate microparticles produced with
    different methods,” Biomaterials, 20, pp. 1427-
    1435, 1999.
    [35] A. Kikuchi, M. Kawabuchi, M. Sugihara and Y.
    Sakurai, “Pulsed dextran release from calcium-
    alginate gel beads,” Journal of Controlled Release,
    47, pp. 21-29, 1997.
    [36] T. Østberg, E. M. Lund and C. Graffner, “Calcium
    alginate matrices for oral multiple unit
    administration: IV. Release characteristics in
    different media,” International Journal of
    Pharmaceutics, 112, pp. 241-248, 1994.
    [37] P. S. J. Cheetham, K. W. Blunk and C. Bucke,
    “Physical studies on cell immobilization using
    calcium alginate gels,” Biotechnology and
    Bioengineering, 21, pp. 2155-2168, 1979.
    [38] D. Knorr and J. Berlin, “Effects of immobilization
    and permeabilization procedures on growth of
    Chenopodium rubrum cells and amaranthin
    concentration,” Journal of Food Science, 52, pp.
    1397-1400, 1987.
    [39] K. Redenbaugh, B. D. Paasch, J. W. Nichol, M. E.
    Kossler, P. R. Viss and K. A. Walker, “Somatic
    seeds: Encapsulation of asexual plant embryos,” Bio-
    Technology, 4, pp. 797-801, 1986.
    [40] I. Constantinidis, I. Rask, R. C. Long and A.
    Sambanis, “Effects of alginate composition on the
    metabolic, secretory, and growth characteristics of
    entrapped bTC3 mouse insulinoma cells,”
    Biomaterials, 20, pp. 2019-2027, 1999.
    [41] A. A. Hardikar, M. V. Risbud and R. R. Bhonde,
    “Improved post-cryopreservation recovery following
    encapsulation of islets in chitosan-alginate
    microcapsules,” Transplantation Proceedings, 32,
    pp. 824-825, 2000.
    [42] S. S. Bang and M. Pazirandeh “Physical properties
    and heavy metal uptake of encapsulated Escherichia
    coli expressing a metal binding gene (NCP)” Journal
    of Microencapsulation, 16, pp. 489-499, 1999.
    [43] I. K. Yoo, G. H. Seong, H. N. Chang and J. K. Park,
    “Encapsulation of lactobacillus casei cells in
    liquid-core alginate capsules for lactic acid
    production,” Enzyme and Microbial Technology, 19,
    pp. 428-433, 1996.
    [44] X. Li, K. Abdi and S. J. Mentzer, “Cloning
    hybridomas in a reversible three-dimensional
    alginate matrix,” Hybridoma, 11, pp. 645-652, 1992.
    [45] P. J. Crosland-Taylor, “A device for counting small
    particles suspended in a fluid through a tube,”
    Nature, 171, pp. 37-38, 1953.
    [46] D. A. Drew and R. T. Lahey, “Phase-distribution
    mechanisms in turbulent low-quality 2-phase flow in
    a circular pipe,” Journal of Fluid Mechanics, 117,
    pp. 91-106, 1982.
    [47] S. L. Anna, N. Bontoux and H. A. Stone, “Formation
    of dispersions using "flow focusing" in
    microchannels,” Applied Physics Letters, 82, pp.
    364-366, 2003.
    [48] I. Kobayashi, S. Mukataka and M. Nakajima, “Novel
    asymmetric through-hole array microfabricated on a
    silicon plate for formulating monodisperse
    emulsions,” Langmuir, 21, pp. 7629-7632, 2005.
    [49] K. Liu, H.J. Ding, J. Liu, Y. Chen and X.Z. Zhao,
    “Shape-controlled production of biodegradable
    calcium alginate gel microparticles using a novel
    microfluidic device,” Langmuir, 22, pp. 9453-9457,
    2006.
    [50] H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M.A.
    Sullan, G.C. Walker and E. Kumacheva, “Microfluidic
    production of biopolymer microcapsules with
    controlled morphology,” Journal of the American
    Chemical Society, 128, pp. 12205-12210, 2006.
    [51] N. Passerini, B. Perissutti, M. Moneghini, D.
    Voinovich, B. Albertini, C. Cavallari and L.
    Rodriguez, “Characterization of carbamazepine-
    gelucire 50/13 microparticles prepared by a spray-
    congealing process using ultrasounds,” Journal of
    Pharmaceutical Sciences, 91, pp. 699-707, 2002.
    [52] B. Albertini, N. Passerini, M. L. Gonza´lez-Rodrı´
    guez, B. Perissutti and L. Rodriguez, “Effect of
    Aerosil® on the properties of lipid controlled
    release microparticles,” Journal of Controlled
    Release, 100, pp. 233-246, 2004.
    [53] N. Passerini, B. Albertini, B. Perissutti and L.
    Rodriguez, “Evaluation of melt granulation and
    ultrasonic spray congealing as techniques to enhance
    the dissolution of praziquantel,” International
    Journal of Pharmaceutics, 318, pp. 92-102, 2006.
    [54] N. Yin, K. Chen and W. Kang, “Preparation of
    BA/ST/AM nano particles by ultrasonic emulsifier-
    free emulsion polymerization,” Ultrasonics
    Sonochemistry, 13, pp. 345-351, 2006.
    [55] P. P. Luz, A. M. Pires and O. A. Serra, “A low-cost
    ultrasonic spraydrryer to prodyce spherical
    miceoparticles fromipolymeric matrices,” Quim.
    Nova, 30, pp. 1744-1746, 2007.
    [56] F. Minoletti, M. Hermoso and V. Gressier,
    “Separation of sedimentary micron-sized particles
    for alaeoceanography and calcareous nannoplankton
    biogeochemistry,” Nature Protocols, 4, pp. 14-24,
    2009.
    [57] T. Nisisako, S. Okushima and T. Torii, “Controlled
    formulation of monodisperse double emulsions in a
    multiple-phase microfluidic system,” Soft Matter,
    1, pp. 23-27, 2005.
    [58] Z. Nie, S. Xu, M. Seo, P. C. Lewis, and E.
    Kumacheva, “Polymer particles with various shapes
    and morphologies produced in continuous microfluidic
    reactors,” Journal of The American Chemical
    Society, 127, pp. 8058-8063, 2005.

    下載圖示 校內:2019-08-19公開
    校外:2019-08-19公開
    QR CODE