| 研究生: |
陳立 Chen, Li |
|---|---|
| 論文名稱: |
具位移偏量之自然對流Y型散熱器最佳尺寸設計之研究 An Optimized Natural Convection Y-Shape-Shifted Heat Sink Design Problem |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 最佳化設計 、自然對流 、Y型散熱器 、拉凡格式法 |
| 外文關鍵詞: | Optimal design, Natural convection, Y-shaped heat sink, Levenberg- Marquardt method |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主旨為使用拉凡格氏法(Levenberg-Marquardt Method)搭配套裝軟體 CFD-ACE+,探討在自然對流情況時三維的Y型散熱器之鰭片偏移及等體積最佳尺寸設計之研究。
本研究以Y型散熱器作為為參考模型,並以此外型之等體積材料作為限制條件,探討在自然對流下以鰭片主幹高度h0、分支長度h1、開口角度α及鰭片偏移距離d作為設計變量進行最佳化設計,目的為降低鰭片底板溫度,進而提高散熱性能,其中並考慮鰭片和空氣之間的輻射熱傳效應,以求得最佳化之鰭片外形及偏移距離。
由最佳化結果可得,Y型鰭片的主幹高度變低、分支長度變長與分支開口角度變大時,可使散熱器底板溫度降低;若新增鰭片偏移距離作為一設計變量進行最佳化計算,則當鰭片上上上偏移排列設計之Design B1與鰭片上下上交錯排列設計之Design B2最佳化結果可更有效的降低底板溫度,增加散熱效果,其原因為煙囪效應使得浮揚煙流更加劇烈。此外,因為鰭片上上上偏移排列的模型設計還可產生一對縱向渦流,所以表現出更佳的散熱性能。
最後將初始設計及Design B1進行實驗驗較數值模擬與實際實驗的差異,由實驗結果比對後可得,數值模擬結果與實際量測之溫度最大誤差小於0.8%,而進行計算熱阻做比較,其最大誤差低於0.4 %,即驗證本論文數值模擬之準確性。
結果顯示Design B1在底板垂直、鰭片垂直( vBvF )情況下熱阻最低,比初始設計的熱阻值小2.6%,即證明該設計經過最佳化之有效性;但在底板水平、鰭片垂直( hBvF )情況下Design B1之熱阻比初始設計高8.3%,符合數值模擬預期之結果,並經實驗驗證後,數值模擬結果與實際情況十分吻合。
An optimum design problem for a three-dimensional natural convection Y-shape-shifted heat sink is investigated numerically and experimentally in the present study. The software package CFD-ACE+ and the Levenberg-Marquardt method (LMM) are utilized as the numerical solution solver and design tool, respectively. The objective of this work is to design the optimal fin stem height, fin branch length, branching angle, and shift distance of the Y-shaped fin under fixed Y-shaped fin volume conditions to minimize the base plate temperature and enhance the heat dissipation performance of the heat sink. The thermal radiation effect between the air and Y-shaped fin is considered in this work to improve the accuracy of the numerical solution of temperatures. The result indicates that in the optimized Y-shaped heat sink, the stem height and branching angle become shorter and larger, respectively, than those of the original design. When the shift distance is considered as a design variable, i.e., the optimized Y-shape-shifted heat sink with an up-up-up fin displacement arrangement, the chimney-flow effect due to the buoyant plume is much more pronounced than that of the original design, and a pair of longitudinal vortices also occur; therefore, better heat dissipation performance can be achieved. Experiments were performed on manufactured heat sinks to verify the accuracy of the design results. The results indicated that the measured temperatures of the heat sinks are very close to the computed data since the maximum error between the computed and measured base temperatures is less than 0.81%. In addition, design B1 (a vertical heat sink) has the smallest thermal resistance among all designs at 2.6% smaller than that of the original vertical heat sink, which confirms the validity of the present work in determining the optimal design of the Y-shape-shifted heat sink.
[1] W. Elenbaas , Heat dissipation of parallel plates by free convection, Physica 9 (1) (1942) 1–28.
[2] J. Bodoia , J. Osterle , The development of free convection between heated ver- tical plates, J. Heat Transf. 84 (1) (1962) 40–43.
[3] W. Aung , Fully developed laminar free convection between vertical plates heated asymmetrically, Int. J. Heat Mass Transf. 15 (8) (1972) 1577–1580.
[4] A. Bar-Cohen , W. Rohsenow , Thermally optimum spacing of vertical, natural convection cooled, parallel plates, J. Heat Transf. 106 (1) (1984) 116–123.
[5] K. Starner , H. McManus , An experimental investigation of free-convection heat transfer from rectangular-fin arrays, J. Heat Transf. 85 (3) (1963) 273–277.
[6] M.A. Ismail, M.Z. Abdullah, M.A. Mujeebu, A CFD-based experimental analysis on the effect of free stream cooling on the performance of micro processor heat sinks, Int. Commun. Heat Mass Transfer 35 (6) (2008) 771–778.
[7] X. Yu, J. Feng, Q. Feng, Q. Wang, Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink, Appl. Therm. Eng. 25 (2–3) (2005) 173–182.
[8] G. Huang, S. Wong, C. Lin, Enhancement of natural convection heat transfer from horizontal rectangular fin arrays with perforations in fin base, Int. J. Therm. Sci. 84 (2014) 164–174.
[9] M. Ahmadi, G. Mostafavi, M. Bahrami, Natural convection from rectangular interrupted fins, Int. J. Therm. Sci. 82 (2014) 62–71.
[10] S.-W. Chang , H.-W. Wu , D.-Y. Guo , J.-J Shi , T.-H Chen , Heat transfer enhance- ment of vertical dimpled fin array in natural convection, Int. J. Heat Mass Transf. 106 (2017) 781–792 .
[11] S. Feng , M. Shi , H. Yan , S. Sun , F. Li , T.J. Lu , Natural convection in a cross-fin heat sink, Appl. Thermal Eng. 132 (2018) 30–37 .
[12] S.S. Haghighi , H. Goshayeshi , M.R. Safaei , Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks, Int. J. Heat Mass Transf. 125 (2018) 640–647 .
[13] D. Jeon , C.J. Byon , M. Transfer , Thermal performance of plate fin heat sinks with dual-height fins subject to natural convection, Int. J. Heat Mass Transf. 113 (2017) 1086–1092 .
[14] C.H. Huang , G.J. Wang, A design problem to estimate the optimal fin shape of LED lighting heat sinks, Int. J. Heat Mass Transf. 106 (2017) 1205–1217.
[15] A. Abbas, C.C. Wang, Augmentation of natural convection heat sink via using displacement design, Int. J. Heat Mass Transf. 154 (2020) 119757
[16] J. Alexandersen, O. Sigmund, N. Aage, Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection, Int. J. Heat Mass Transf. 100 (2016) 876–891.
[17] O. Sigmund, S. Sanna, J.H.K. Haertel, F. Wang, B.S. Lazarov, T. Lei, S. De Angelis, J. Alexandersen, K. Engelbrecht, Investment casting and experimental testing of heat sinks designed by topology optimization, Int. J. Heat Mass Transf. 127 (2018) 396–412.
[18] D. Calamas, J. Baker, Tree-like branching fins: performance and natural convective heat transfer behavior, Int. J. Heat Mass Transf. 62 (2013) 350–361.
[19] K.T. Park, H.J. Kim, D.-K. Kim, Experimental study of natural convection from vertical cylinders with branched fins, Exp. Therm. Fluid Sci. 54 (2014) 29–37.
[20] V. Karlapalema, S. Rathb, S.K. Dash, Orientation effects on laminar natural convection heat transfer from branching-fins, International Journal of Thermal Sciences 142 (2019) 89–105
[21] D.M. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math. 11 (1963) 431–441.
[22] J. Pujol, The solution of nonlinear inverse problems and the Levenberg-Marquardt method, Geophysics 72 (2007) W1–W16.
[23] Y.C. Du and A. Stephanus, Levenberg-Marquardt neural network algorithm for degree of arteriovenous fistula stenosis classification using a dual optical photoplethysmography sensor, Sensors 18 (2018) 2322.
[24] R.K. Kumar, S. Sandesh and K. Shankar, Parametric identification of nonlinear dynamic systems using combined Levenberg-Marquardt and genetic algorithm, International Journal of Structural Stability and Dynamics 7 (2007) 715–725.
[25] M.J. Kidger, Use of the Levenberg-Marquardt (damped least-squares) optimization method in lens design, Optical Engineering 32(1993) 1731–1739.
[26] C.H. Huang and P.W. Tung, Numerical and experimental studies on an optimum fin design problem to determine the deformed wavy-shaped heat sinks, International Journal of Thermal Sciences 151 (2020) article 106282.
[27] C.H. Huang and Y.T. Wu, An optimum design for a natural convection pin fin array with orientation consideration“, Applied Thermal Engineering 188 (2021) 116633.
[28] C.H. Huang, Y.R. Huang, An optimum design problem in estimating the shape of perforated pins and splitters in a plate-pin-fin heat sink, International Journal of Thermal Sciences 170 (2021) article 107096.
[29] CFD-ACE+ user’s manual, ESI-CFD Inc., 2020.
[30] I. Tari and M. Mehrtash, Natural convection heat transfer from inclined plate-fin heat sinks, Int. J. Heat Mass Transf. 56 (1–2) (2013) 574-593
[31] J.R. Taylor, An introduction to error analysis: the study of uncertainties in physical measurements, University Science Books, Mill Valley, California, 1982.
[32] I.B. Celik, U. Ghia, P.J. Roache, C.J. Freitas, H. Coleman, P. E. Raad, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, Journal of Fluids Engineering 130 (7) (2008) 078001-1.
校內:2026-08-24公開