| 研究生: |
林幸二 Lin, Sing-Er |
|---|---|
| 論文名稱: |
非熱微電漿系統之抑菌效用評估-使用細菌於模擬傷口之培養基模型 Bacterial inhibition effect for applying a non-thermal micro-plasma system:a proof-of-concept study with bacteria in a simulated wound-medium model |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 共同指導教授: |
劉浩志
Liu, Bernard Haochih 王士豪 Wang, Shyh-Hau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 非熱微電漿 、模擬傷口模型 、抑菌 |
| 外文關鍵詞: | Non-thermal micro-plasma, simulated wound model, inhibition |
| 相關次數: | 點閱:123 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電漿醫療器材於近幾年快速發展,本實驗室所開發的非熱微電漿裝置已通過國際電工委員會所設的醫療電氣設備的安全和有效性技術標準IEC 60601-1之電磁性安全規範,透過德國DIN工業標準局所設的DIN SPEC 91315法規與臨床動物安全試驗,驗證了此醫療器材之安全性,並通過了人體試驗委員會的審核標準,已可以應用在人體之上。以非熱微電漿系統應用於人體傷口之醫療器材,其功能性主要訴求改善傷口處微環境,提供一個適合傷口修復之環境,進而促使傷口癒合。遂本研究將使用本實驗室所開發之非熱微電漿裝置,觀察微電漿系統產生的抑菌圈大小與對於不同環境下之抑菌功效。使用菌種為臨床傷口上最常見之兩種菌種,金黃色葡萄球菌與綠膿桿菌。
本研究先進行微電漿溫度與反應性物種診斷,實驗結果顯示微電漿系統於激發功率13 W,氮氣添加1%於氦氣中為最佳參數,依照診斷結果作為後續實驗參數。進行菌種生長曲線量測,找出菌種之活性較高,繁殖力也較強的生長時間點。實驗結果顯示金黃色葡萄球菌需生長3 hr,綠膿桿菌需生長4.5 hr。
抑菌圈評估實驗,抑菌圈大小隨著處理時間的增加而增大。液相抑菌評估實驗,主要藉由反應性物種水解進入液相中,與水中分子與離子交互反應,產生氧化劑破壞液相中菌種之細菌膜,抑制水中菌種的生長。氣相抑菌評估實驗,以培養基模擬傷口溫床,模擬電漿於潔淨與惡劣微環境改善的實驗,電漿處理的組別與各別控制組相比,菌落數均有顯著差異的下降。其中對於潔淨微環境之環境改善程度較惡劣微環境的改善效果好。於細菌膜完整性評估實驗,經過電漿處理,其細菌膜皆有破損的情況產生,使染劑穿透破損細菌膜,於螢光顯微鏡下呈現鮮紅色。抑菌效果的有效性與生物膜的深度有關,可能與生物膜厚度成比例地下降。
Plasma medical equipment evolve rapidly in recent years. The functional requirement of non-thermal micro-plasma system used on wound care is mainly to improve the wound micro-environment, to provide a suitable environment for wound repair, and thus promote wound healing. In this study, a non-thermal micro-plasma device is used to observe the size of the inhibition zone produced by the micro-plasma system and the inhibition effect for different in-vitro environments. The inhibition zone experimental results show that the size of the inhibition zone formed by the plasma increases with the increase in the treatment time. In liquid phase, the reactive species produced by micro-plasma system are hydrolyzed and produce oxidant to destroy the cell membrane of the bacteria and inhibit the growth of the bacteria. On the simulated wound model, the number of colonies of the test group significantly declined compared to the control group. Having two different bacteria cultivated on either clean micro-environment or harsh environment, after plasma treatment, the inhibition effect on the clean micro-environment was improved more significantly. The inhibition effect in the biofilm after the plasma treatment showed that the bacterial viability declined compared with the control group. The bacteria appeared to be in bright red under the microscope, due to the dye going through the damaged bacterial membrane. The effectiveness of the plasma is related to the depth of the biofilm and decreases with respect to the thickness of the biofilm.
[1] M. McGuckin, R. Goldman, L. Bolton, and R. Salcido, "The Clinical Relevance of Microbiology in Acute and Chronic Wounds", Advances in Skin & Wound Care, Vol. 16, pp. 12-23, 2003.
[2] P. G. Bowler, "The 10(5) bacterial growth guideline: reassessing its clinical relevance in wound healing", Ostomy/wound management, Vol. 49, pp. 44-53, 2003.
[3] R. J. White and K. F. Cutting, "Critical colonization--the concept under scrutiny", Ostomy Wound Manage, Vol. 52, pp. 50-6, 2006.
[4] S. C. Davis, C. Ricotti, A. Cazzaniga, E. Welsh, W. H. Eaglstein, and P. M. Mertz, "Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo", Wound Repair and Regeneration, Vol. 16, pp. 23-29, 2008.
[5] S. C. Davis, L. Martinez, and R. Kirsner, "The diabetic foot: The importance of biofilms and wound bed preparation", Current Diabetes Reports, Vol. 6, pp. 439-445, 2006.
[6] A. G. Nusbaum, J. Gil, M. K. Rippy, B. Warne, J. Valdes, A. Claro, and S. C. Davis, "Effective Method to Remove Wound Bacteria: Comparison of Various Debridement Modalities in an In Vivo Porcine Model", Journal of Surgical Research, Vol. 176, pp. 701-707, 2012.
[7] F. Brehmer, H. A. Haenssle, G. Daeschlein, R. Ahmed, S. Pfeiffer, A. Görlitz, D. Simon, M. P. Schön, D. Wandke, and S. Emmert", Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm®VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622)", Journal of the European Academy of Dermatology and Venereology, Vol. 29, pp. 148-155, 2015.
[8] N. O'Connor, O. Cahill, S. Daniels, S. Galvin, and H. Humphreys, "Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections?", Journal of Hospital Infection, vol. 88, pp. 59-65, 2014.
[9] A. Mai-Prochnow, A. B. Murphy, K. M. McLean, M. G. Kong, and K. Ostrikov, "Atmospheric pressure plasmas: Infection control and bacterial responses", International Journal of Antimicrobial Agents, Vol. 43, pp. 508-517, 2014.
[10] M. Ulmer, J. Lademann, A. Patzelt, F. Knorr, A. Kramer, T. Koburger, O. Assadian, G. Daeschlein, and B. Lange-Asschenfeldt, "New Strategies for Preoperative Skin Antisepsis", Skin Pharmacology and Physiology, Vol. 27, pp. 283-292, 2014.
[11] G. Daeschlein, M. Napp, S. Lutze, A. Arnold, S. von Podewils, D. Guembel, and M. Jünger, "Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation", JDDG: Journal der Deutschen Dermatologischen Gesellschaft, Vol. 13, pp. 143-149, 2015.
[12] X. F. Z. QIAN CHENG, DONG‑HUA DI, GUO‑YANG ZHAO and XUE‑WEN CUI, "Efficacy of different irrigation solutions on the early debridement of open fracture in rats", EXPERIMENTAL AND THERAPEUTIC MEDICINE, Vol. 9, pp. 1589-1592, 2015.
[13] A. Giacometti, O. Cirioni, A. M. Schimizzi, M. S. Del Prete, F. Barchiesi, M. M. D'Errico, E. Petrelli, and G. Scalise, "Epidemiology and Microbiology of Surgical Wound Infections", Journal of Clinical Microbiology, Vol. 38, pp. 918-922, 2000.
[14] A. J. Singer and A. B. Dagum "Current Management of Acute Cutaneous Wounds", New England Journal of Medicine, Vol. 359, pp. 1037-1046, 2008.
[15] C. Whelan, J. Stewart, and B. F. Schwartz, "MECHANICS OF WOUND HEALING AND IMPORTANCE OF VACUUM ASSISTED CLOSURE® IN UROLOGY", The Journal of Urology, Vol. 173, pp. 1463-1470, 2005.
[16] C. L. Hess, M. A. Howard, and C. E. Attinger, "A Review of Mechanical Adjuncts in Wound Healing: Hydrotherapy, Ultrasound, Negative Pressure Therapy, Hyperbaric Oxygen, and Electrostimulation", Annals of Plastic Surgery, Vol. 51, pp. 210-218, 2003.
[17] C. Plafki, P. Peters, M. Almeling, W. Welslau, and R. Busch, "Complications and side effects of hyperbaric oxygen therapy", Aviat Space Environ Med, Vol. 71, pp. 119-24, 2000.
[18] M. P. Clare, T. C. Fitzgibbons, S. T. McMullen, R. C. Stice, D. F. Hayes, and L. Henkel, "Experience with the Vacuum Assisted Closure Negative Pressure Technique in the Treatment of Non-healing Diabetic and Dysvascular Wounds", Foot & Ankle International, Vol. 23, pp. 896-901, 2002.
[19] H. Birke-Sorensen, M. Malmsjo, P. Rome, D. Hudson, E. Krug, L. Berg, A. Bruhin, C. Caravaggi, M. Chariker, M. Depoorter, C. Dowsett, R. Dunn, F. Duteille, F. Ferreira, J. M. F. Martínez, G. Grudzien, S. Ichioka, R. Ingemansson, S. Jeffery, C. Lee, S. Vig, N. Runkel, R. Martin, and J. Smith, "Evidence-based recommendations for negative pressure wound therapy: Treatment variables (pressure levels, wound filler and contact layer) – Steps towards an international consensus", Journal of Plastic, Reconstructive & Aesthetic Surgery, Vol. 64, Supplement 1, pp. S1-S16, 2011.
[20] N. K. Kanakaris, C. Thanasas, N. Keramaris, G. Kontakis, M. S. Granick, and P. V. Giannoudis, "The efficacy of negative pressure wound therapy in the management of lower extremity trauma: Review of clinical evidence", Injury, Vol. 38, pp. S8-S17, 2007.
[21] C. M. Mouës, F. Heule, and S. E. R. Hovius, "A review of topical negative pressure therapy in wound healing: sufficient evidence?", The American Journal of Surgery, Vol. 201, pp. 544-556, 2011.
[22] H. Sano and S. Ichioka, "Involvement of nitric oxide in the wound bed microcirculatory change during negative pressure wound therapy", International Wound Journal, Vol. 12, pp. 397-401, 2015.
[23] S. S. Scherer, G. Pietramaggiori, J. C. Mathews, and D. P. Orgill, "Short Periodic Applications of the Vacuum-Assisted Closure Device Cause an Extended Tissue Response in the Diabetic Mouse Model", Plastic and Reconstructive Surgery, Vol. 124, pp. 1458-1465, 2009.
[24] S. S. Scherer, G. Pietramaggiori, J. C. Mathews, M. J. Prsa, S. Huang, and D. P. Orgill, "The Mechanism of Action of the Vacuum-Assisted Closure Device", Plastic and Reconstructive Surgery, Vol. 122, pp. 786-797, 2008.
[25] S. Vig, C. Dowsett, L. Berg, C. Caravaggi, P. Rome, H. Birke-Sorensen, A. Bruhin, M. Chariker, M. Depoorter, R. Dunn, F. Duteille, F. Ferreira, J. M. Francos Martínez, G. Grudzien, D. Hudson, S. Ichioka, R. Ingemansson, S. Jeffery, E. Krug, C. Lee, M. Malmsjo, N. Runkel, R. Martin, and J. Smith, "Evidence-based recommendations for the use of negative pressure wound therapy in chronic wounds: Steps towards an international consensus", Journal of Tissue Viability, Vol. 20, Supplement 1, pp. S1-S18, 2011.
[26] L. Tonks and I. Langmuir, "Oscillations in Ionized Gases", Physical Review, Vol. 33, pp. 195-210, 1929.
[27] K. D. Weltmann, E. Kindel, R. Brandenburg, C. Meyer, R. Bussiahn, C. Wilke, and T. von Woedtke, "Atmospheric Pressure Plasma Jet for Medical Therapy: Plasma Parameters and Risk Estimation", Contributions to Plasma Physics, Vol. 49, pp. 631-640, 2009.
[28] S. Blackert, B. Haertel, K. Wende, T. von Woedtke, and U. Lindequist, "Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT)", Journal of Dermatological Science, Vol. 70, pp. 173-181, 2013.
[29] A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources", IEEE Transactions on Plasma Science, Vol. 26, pp. 1685-1694, 1998.
[30] M. Zenker, "Argon plasma coagulation", GMS Krankenhaushygiene Interdisziplinar, Vol. 3, pp. Doc15, 2008.
[31] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review", Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 61, pp. 2-30, 2006.
[32] M. K. Boudam, M. Moisan, B. Saoudi, C. Popovici, N. Gherardi, and F. Massines, "Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture", Journal of Physics D: Applied Physics, Vol. 39, pp. 3494, 2006.
[33] J. H. Rabe, A. J. Mamelak, P. J. S. McElgunn, W. L. Morison, and D. N. Sauder, "Photoaging: Mechanisms and repair", Journal of the American Academy of Dermatology, Vol. 55, pp. 1-19, 2006.
[34] E. C. S. C. o. C. Products and A. R. Young, EC Scientific Committee on Consumer Products (SCCP) opinion on biological effects of ultraviolet radiation relevant to health with particular reference to sunbeds for cosmetic purposes: Unknown Publisher, 2006.
[35] Y. Jin, C. Ren, Z. Xiu, D. Wang, Y. Wang, and H. Yu, "Comparison of Yeast Inactivation Treated in He, Air and N 2 DBD Plasma", Plasma Science and Technology, Vol. 8, pp. 720, 2006.
[36] Y. Duan, C. Huang, and Q. S. Yu, "Cold plasma brush generated at atmospheric pressure", Review of Scientific Instruments, Vol. 78, pp. 015104, 2007.
[37] Q. S. Yu, C. Huang, F. H. Hsieh, H. Huff, and Y. Duan, "Bacterial inactivation using a low-temperature atmospheric plasma brush sustained with argon gas", Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 80B, pp. 211-219, 2007.
[38] Q. S. Yu, C. Huang, F.-H. Hsieh, H. Huff, and Y. Duan, "Sterilization effects of atmospheric cold plasma brush", Applied Physics Letters, Vol. 88, pp. 013903, 2006.
[39] C.-C. Weng, J.-D. Liao, H.-H. Chen, T.-Y. Lin, and C.-L. Huang, "Capillary-tube-based oxygen/argon micro-plasma system for the inactivation of bacteria suspended in aqueous solution", International Journal of Radiation Biology, Vol. 87, pp. 936-943, 2011.
[40] X. Hao, A. M. Mattson, C. M. Edelblute, M. A. Malik, L. C. Heller, and J. F. Kolb, "Nitric Oxide Generation with an Air Operated Non-Thermal Plasma Jet and Associated Microbial Inactivation Mechanisms", Plasma Processes and Polymers, Vol. 11, pp. 1044-1056, 2014.
[41] G. Daeschlein, T. von Woedtke, E. Kindel, R. Brandenburg, K.-D. Weltmann, and M. Jünger, "Antibacterial Activity of an Atmospheric Pressure Plasma Jet Against Relevant Wound Pathogens in vitro on a Simulated Wound Environment", Plasma Processes and Polymers, Vol. 7, pp. 224-230, 2010.
[42] S. J. Phil Bowler, Victoria Towers, Rebecca Booth, David Parsons, Mike Walker, "Dressing conformability and silver-containing wound dressings", Wounds International, Vol. 1, pp. 35-40, 2010.
[43] S. A. Ermolaeva, A. F. Varfolomeev, M. Y. Chernukha, D. S. Yurov, M. M. Vasiliev, A. A. Kaminskaya, M. M. Moisenovich, J. M. Romanova, A. N. Murashev, I. I. Selezneva, T. Shimizu, E. V. Sysolyatina, I. A. Shaginyan, O. F. Petrov, E. I. Mayevsky, V. E. Fortov, G. E. Morfill, B. S. Naroditsky, and A. L. Gintsburg, "Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds", Journal of Medical Microbiology, Vol. 60, pp. 75-83, 2011.
[44] M.-H. T. Ngo, J.-D. Liao, P.-L. Shao, C.-C. Weng, and C.-Y. Chang, "Increased Fibroblast Cell Proliferation and Migration Using Atmospheric N2/Ar Micro-Plasma for the Stimulated Release of Fibroblast Growth Factor-7", Plasma Processes and Polymers, Vol. 11, pp. 80-88, 2014.
[45] 劉宇翔, "比較非熱微電漿與負壓於促進小鼠手術傷口癒合之效用探討", 成功大學材料科學及工程學系學位論文, 成功大學, 2014.
[46] 陳宇星, 非熱微電漿相較於負壓處理在糖尿病小鼠傷口癒合之效用評估: National Cheng Kung University Department of Materials Science and Engineering, 2015.
[47] M.-H. Ngo Thi, P.-L. Shao, J.-D. Liao, C.-C. K. Lin, and H.-K. Yip, "Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non-Thermal N2/Ar Micro-Plasma", Plasma Processes and Polymers, Vol. 11, pp. 1076-1088, 2014.
[48] "DIN SPEC 91315: General requirements for plasma sources", DIN German Institute for Standardization, 2014.
[49] 林峰正, "符合DIN規範之非熱微電漿裝置進行豬傷口模式之安全性評估", 成功大學材料科學及工程學系學位論文, 成功大學, 2016.
[50] W.-K. Huang, C.-C. Weng, J.-D. Liao, Y.-C. Wang, and S.-F. Chuang, "Capillary-tube-based micro-plasma system for disinfecting dental biofilm", International Journal of Radiation Biology, Vol. 89, pp. 364-370, 2013.
[51] "活體單細胞光學影像分析系統簡介", 成大醫學院核心實驗室, 2015.
[52] M. A. L. A. J. Lichtenberg, "Principles of plasma discharges and material processing", John Wiley & Sons, 2005.
[53] J. M. Zingg, "Modulation of signal transduction by vitamin E", Mol Aspects Med, Vol. 28, 2007.
[54] S. Kalghatgi, G. Friedman, A. Fridman, and A. M. Clyne, "Endothelial Cell Proliferation is Enhanced by Low Dose Non-Thermal Plasma Through Fibroblast Growth Factor-2 Release", Annals of Biomedical Engineering, Vol. 38, pp. 748-757, 2010.
[55] G. J. Tortora, Funke, B. R., & Case, C. L., "Microbiology: an introduction.", 2010.
[56] M. S. Mann, R. Tiede, K. Gavenis, G. Daeschlein, R. Bussiahn, K.-D. Weltmann, S. Emmert, T. v. Woedtke, and R. Ahmed, "Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED", Clinical Plasma Medicine, Vol. 4, pp. 35-45, 2016.
[57] E. Kvam, B. Davis, F. Mondello, and A. L. Garner, "Nonthermal Atmospheric Plasma Rapidly Disinfects Multidrug-Resistant Microbes by Inducing Cell Surface Damage", Antimicrobial Agents and Chemotherapy, Vol. 56, pp. 2028-2036, 2012.
[58] M. Cooper, G. Fridman, A. Fridman, and S. G. Joshi, "Biological responses of Bacillus stratosphericus to Floating Electrode-Dielectric Barrier Discharge Plasma Treatment", Journal of Applied Microbiology, Vol. 109, pp. 2039-2048, 2010.
[59] D. L. Bayliss, J. L. Walsh, F. Iza, G. Shama, J. Holah, and M. G. Kong, "Complex Responses of Microorganisms as a Community to a Flowing Atmospheric Plasma", Plasma Processes and Polymers, Vol. 9, pp. 597-611, 2012.
[60] S. G. Joshi, M. Cooper, A. Yost, M. Paff, U. K. Ercan, G. Fridman, G. Friedman, A. Fridman, and A. D. Brooks, "Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli", Antimicrobial Agents and Chemotherapy, Vol. 55, pp. 1053-1062, 2011.